ФИЗИЧЕСКАЯ ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

УДК 538.958:535.8

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ С ПЛЕНКОЙ ПОРИСТОГО КРЕМНИЯ, ОБЛУЧЕННОЙ НАНОСЕКУНДНЫМ ИТТЕРБИЕВЫМ ЛАЗЕРОМ

- **В. С. Хилов**, аспирант кафедры ОиТФиМПФ РГУ имени С.А. Есенина, Рязань, Россия; orcid.org/0009-0002-1673-8029, e-mail: laservr@yandex.ru
- **В. В. Трегулов**, д.т.н., профессор кафедры ОиТФиМПФ РГУ имени С.А. Есенина, Рязань, Россия; orcid.org/0009-0001-1441-6918, e-mail: trww@yandex.ru
- **А. И. Иванов**, аспирант кафедры ОиТФиМПФ РГУ имени С.А. Есенина, Рязань, Россия; orcid.org/0009-0002-7637-1433, e-mail: alex2012-14@yandex.ru
- **Н В. Рыбина**, к.ф.-м.н., доцент, доцент кафедры МНЭЛ РГРТУ, Рязань, Россия; orcid.org/0000-0003-0377-5605, e-mail: pgnv@mail.ru
- **Н Б. Рыбин**, к.ф.-м.н., доцент, доцент кафедры МНЭЛ РГРТУ, Рязань, Россия; orcid.org/0000-0003-2000-0158, e-mail: nikolay.rybin@yandex.ru

Исследовано влияние параметров режима облучения наносекундными лазерными импульсами иттербиевого волоконного лазера с длинной волны 1064 нм на динамику изменения концентрации дефектов с глубокими энергетическими уровнями. Показано, что облучение пленки por-Si полупроводниковой структуры por-Si/p-Si при длительности импульса 4 нс и средней энергии импульса 3,60·10⁻⁹ Дж приводит к снижению концентрации дефектов с глубокими энергетическими уровнями почти на два порядка величины. Дальнейшее увеличение длительности импульса и его средней энергии приводит к росту концентрации дефектов. Облучение лазером приводит к плавлению поверхностного слоя пленки por-Si. Установлены механизмы процессов, управляющие изменением концентрации дефектов с глубокими энергетическими уровнями. Показано, что электрофизические характеристики исследуемой полупроводниковой структуры por-Si/p-Si в значительной мере определяются ловушками с энергетическими уровнями, характеризующимися сложным распределением в области энергий активации.

Ключевые слова: пористый кремний, наносекундные лазерные импульсы, вольт- амперные характеристики, вольт-фарадные характеристики, глубокие энергетические уровни, генерационнорекомбинационные процессы.

DOI: 10.21667/1995-4565-2025-91-256-266

Введение

В настоящее время актуальна задача применения пленок пористого кремния (por-Si) для создания полупроводниковых приборов. Одним из важнейших свойств por-Si является сильно развитая поверхность, что делает его привлекательным для создания антиотражающих слоев солнечных элементов, чувствительных областей датчиков влажности и химических газовых датчиков [1]. Также важно отметить, что для формирования por-Si не требуются сложное технологическое оборудование и дорогие химические реактивы. Для повышения эффективности солнечных элементов, улучшения функциональных характеристик датчиков актуальна задача разработки новых способов модификации поверхности por-Si. Одним из вариантов решения указанной задачи является обработка пленок por-Si наносекундными лазерными импульсами [2-4]. В частности, наносекундные лазерные импульсы длительностью 70 нс при длине волны 694 нм, в диапазоне плотностей энергии 0,73-1,8 Дж/см² существенно

измененяют морфологию пленок por-Si [2]. В работе [3] показано, что облучение лазером с длительностью импульсов 80-100 нс в диапазоне плотности энергии 5-7 Дж/см² приводит к окислению por-Si. В работе [4] изучалось воздействие на поверхность por-Si импульсного иттербиевого волоконного лазера с длиной волны 1064 нм, при длительностях импульса 4-30 нс и мощности 4-12 Вт. В результате исследований показано, что режимы облучения влияют на информационно-корреляционные характеристики поверхности por-Si.

Целью данной работы является исследование влияния режимов облучения наносекундными лазерными импульсами пленок por-Si, сформированных методом металл-стимулированного травления, на электрофизические характеристики полупроводниковой структуры por-Si/p-Si.

Технология изготовления образцов

Для изготовления исследуемых образцов применялись кремниевые монокристаллические пластины р-типа проводимости, с удельным сопротивлением 1 Ом · см и ориентацией поверхности (100). Пленки por-Si выращивались методом двухэтапного металл-стимулированного травления.

В ходе первого этапа на поверхности кремниевой пластины осаждались частицы серебра из раствора: Ag_2SO_4 (0,01 M), HF (46 %), C_2H_5OH (92 %) при соотношении компонентов 1:0, 1:0,3, в течение 20 с. Затем пластина отмывалась в дистиллированной воде.

На втором этапе пластина с частицами серебра погружались в раствор: H_2O_2 (1,24 M), HF (46 %), C_2H_5OH (92 %) при соотношении компонентов 1:0, 5:0,25 и выдерживалась в течение 60 мин. В результате формировалась пористая структура. Далее образцы отмывались в дистиллированной воде, а затем в концентрированной HNO₃ в течение 60 мин для удаления из пор серебряных частиц. В заключение образцы промывались дистиллированной водой для удаления следов реактивов и продуктов реакции и высушивались в сушильном шкафу.

Облучение пленок рог-Si проводилось импульсным иттербиевым волоконным лазером YLPM-1-4x200-20-20 (IPG Photonics, Россия) с длиной волны излучения 1064 нм. Лазерный луч сканировал поверхность пленки рог-Si со скоростью 150 мм/с и частотой повторения импульсов 20 кГц. Обрабатываемая площадь пленки рог-Si составляла 10x10 мм. Облучение проводилось импульсами длительностью $\tau = 4\text{--}30$ нс, при значениях средней мощности импульса P = 0.2--5.6 Вт. При облучении пластина с пленкой рог-Si находилась в кювете, заполненной изопропанолом. Толщина слоя изопропанола над поверхностью образца составляла 5 мм. Применение изопропанола обусловлено минимизацией интенсивности окисления поверхности кремниевых кристаллитов пленки рог-Si. Режимы облучения образцов P и τ , а также величина средней энергии лазерного импульса E указаны в таблице 1.

Для проведения электрических измерений формировались индиевые омические контакты к пленке рог-Si и кремниевой подложке на противоположных поверхностях полупроводниковой структуры. С целью характеризации электрофизических характеристик исследовались вольт-амперные и вольт-фарадные характеристики (ВАХ и ВФХ, соответственно) при температуре 300 К. Измерения проводились с помощью цифрового измерителя иммитанса Е7-20 (МНИПИ, р. Беларусь). Прямое смещение соответствует приложению отрицательного потенциала к контакту на поверхности слоя рог-Si, положительного потенциала – к контакту на кремниевой подложке р-типа (на противоположной поверхности образца).

Исследование вольт-амперных характеристик

Прямые ветви ВАХ в линейном масштабе для диапазона значений напряжения прямого смещения 0-2 В представлены на рисунке 1. С целью сокращения избыточности графической информации на рисунке1 представлены ВАХ образцов № 5 (+), № 4 (\square), № 9 (\circ), № 14 (Δ), № 1 (\diamond). Прямые ветви ВАХ образцов № 3, № 8, № 7, №6 расположены между характеристиками образцов № 4 (\square) и № 9 (\circ). Прямые ветви ВАХ образцов № 16, № 13, № 12, № 11, № 15, № 17 расположены между характеристиками образцов № 14 (Δ) и № 1 (\diamond). Прямые

ветви ВАХ образцов № 2 и № 10 расположены между характеристиками образцов № 9 (\circ) и № 14 (Δ).

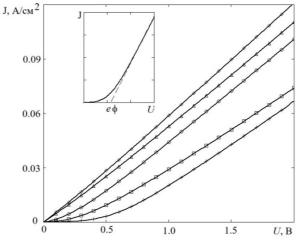


Рисунок 1 — Прямые ветви ВАХ образцов № 5 (+), № 4 (\square), № 9 (\circ), № 14 (Δ), № 1 (\Diamond) в линейном масштабе

Figure 1 – Straight branches of the I-V characteristics of samples \mathbb{N}_2 5 (+), \mathbb{N}_2 4 (\square), \mathbb{N}_2 9 (\circ), \mathbb{N}_2 14 (Δ), \mathbb{N}_2 1 (\Diamond) in a linear scale

Обратные ветви ВАХ образцов № 5 (+), № 4 (\square), № 9 (\circ), № 14 (Δ), № 1 (\Diamond) в линейном масштабе для диапазона значений напряжения прямого смещения 0-15 В представлены на рисунке 2.

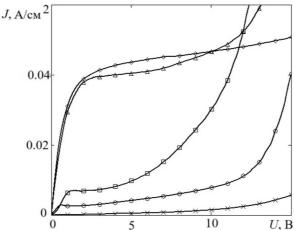


Рисунок 2 – Обратные ветви ВАХ образцов № 5 (+), № 4 (\square), № 9 (\circ),№1 4 (Δ), № 1 (\diamond) в линейном масштабе

Figure 2 – Reverse branches of the I-V characteristics of samples \mathbb{N}_2 5 (+), \mathbb{N}_2 4 (\square), \mathbb{N}_2 9 (\circ), \mathbb{N}_2 14 (Δ), \mathbb{N}_2 1 (\diamond) in a linear scale

Результаты исследования электрофизических характеристик экспериментальных образцов представлены в таблице 1.

Исследуемые полупроводниковые структуры обладают эффектом выпрямления, степень проявления которого характеризуется коэффициентом выпрямления:

$$K = \frac{I_{IN}}{I_{OUT}},\tag{1}$$

где I_{IN} и I_{OUT} — величины токов прямого и обратного смещения, соответственно, при напряжении смещения 1 В. Значения K экспериментальных образцов приведены в таблице 1. Наименьшее значение K наблюдается у образцов \mathbb{N}_2 1, \mathbb{N}_2 16, \mathbb{N}_2 17, наибольшее — у образца \mathbb{N}_2 5 (см. таблицу 1).

Таблица 1 — Физические величины, характеризующие режимы облучения поверхности пленок por-Si, а также результаты исследования электрофизических характеристик экспериментальных образцов

 $Table\ 1-Physical\ quantities\ characterizing\ the\ irradiation\ modes\ of\ the\ surface\ of\ por-Si\ films,$ as well as the results of the study of the electrophysical characteristics of experimental samples

№	Режимы облучения			Результаты исследования элек- трофизических характеристик			
обр.	т, нс	<i>Рср</i> , Вт	<i>E</i> , Дж	εφ, эΒ	K	N_t , cm ⁻³	№ гр.
1	ı	-	-	0,06	1,8	$1,40\cdot10^{16}$	1
2	4	0,2	$8,00\cdot 10^{-10}$	0,19	6,2	$9,28 \cdot 10^{14}$	2
3	4	0,4	1,60·10 ⁻⁹	0,25	17,4	$5,66\cdot10^{14}$	2
4	4	0,7	$2,80\cdot 10^{-9}$	0,36	4,6	$3,54\cdot10^{14}$	2
5	4	0,9	$3,60\cdot10^{-9}$	0,58	125,2	$2,18\cdot10^{14}$	2
6	8	0,6	4,80·10 ⁻⁹	0,36	3,0	$3,29\cdot10^{14}$	2
7	8	1,2	9,60·10 ⁻⁹	0,29	11,8	$4,00\cdot10^{14}$	2
8	8	1,8	1,44·10 ⁻⁸	0,27	37,4	$4,71\cdot10^{14}$	2
9	8	2,4	1,92·10 ⁻⁸	0,25	15,8	$4,86\cdot10^{14}$	2
10	20	1,1	$2,20\cdot10^{-8}$	0,20	60,5	$1,26\cdot 10^{15}$	3
11	30	1,4	$4,20\cdot10^{-8}$	0,15	1,9	$3,05\cdot 10^{15}$	3
12	20	2,2	4,40.10-8	0,12	1,9	$3,71\cdot10^{15}$	3
13	20	3,4	6,80·10 ⁻⁸	0,13	4,0	$4,41\cdot10^{15}$	3
14	30	2,8	8,40.10-8	0,13	3,3	$4,78 \cdot 10^{15}$	3
15	20	4,5	$9,00\cdot 10^{-8}$	0,10	3,6	$5,10\cdot10^{15}$	3
16	30	4,2	$1,26\cdot 10^{-7}$	0,08	1,8	$5,79 \cdot 10^{15}$	3
17	30	5,6	$1,68 \cdot 10^{-7}$	0,06	1,8	$8,12\cdot10^{15}$	3

На прямых ветвях ВАХ (рисунок 1) в диапазоне напряжений смещения 0-1 В наблюдается нелинейность характеристик, которая наиболее сильно выражена для образцов № 5 (+), № 4 (\square), № 9 (\bigcirc) и слабо проявляется для образцов № 14 (Δ), № 1 (\Diamond). Это свидетельствует о наличии потенциального барьера $e\varphi$ в полупроводниковой структуре и образовании области пространственного заряда (ОПЗ). При этом прямые ветви ВАХ могут быть представлены экспоненциальной зависимостью, характерной для барьерных структур:

$$J \sim exp\bigg(\frac{qU}{nkT}\bigg),\tag{2}$$

где q — элементарный заряд; n — показатель неидеальности; k — постоянная Больцмана, T — абсолютная температура [5]. Для всех образцов $n \approx 2$, следовательно, при малых значениях напряжения прямого смещения ток определяется рекомбинацией носителей в ОПЗ с участием ловушек.

Высота потенциального барьера $e\phi$ экспериментальных образцов определялась по пересечению касательной к прямой ветви ВАХ в диапазоне напряжений 1,5-2 В, с осью напряжений (вставка на рисунке 1). Значения величины $e\phi$ для исследуемых образцов приведены в таблице. Наименьшее значение $e\phi$ отмечается у образцов № 1 и № 17, наибольшее – у образца № 5 (см. таблицу 1).

На рисунке 3 представлены прямые ветви ВАХ в двойном логарифмическом масштабе для образцов № 5 (+), № 4 (\square), № 9 (\circ), № 14 (Δ), № 1 (\diamond) в диапазоне напряжений смещения 0-15 В. На представленных графиках можно выделить участки І, ІІ и ІІІ, которые можно аппроксимировать отрезками прямых линий, что свидетельствует о проявлении различных механизмов переноса носителей заряда в исследуемой полупроводниковой структуре (рисунок 3). Графики на рисунке 3 могут быть представлены степенной зависимостью, используемой в рамках теории токов, ограниченных пространственным зарядом (ТОПЗ):

$$J \sim U^m, \tag{3}$$

J, A/cm²
0.1
0.01
10⁻³
10⁻⁴
10⁻⁵
1
0.01
0.01
1 1 10 U, B

где m – показатель степени, характеризующий наклон соответствующего участка BAX [6].

Рисунок 3 — Прямые ветви ВАХ в двойном логарифмическом масштабе образцов № 5 (+), №4 (□), № 9 (∘), №14 (△), №1 (⋄)

Figure 3 – Straight branches of the I-V characteristics in double logarithmic scale of samples $N_2 5$ (+), $N_2 . 4$ (\square), $N_2 9$ (\circ), $N_2 14$ (Δ), $N_2 1$ (\Diamond)

На участке I прямых ветвей BAX для всех образцов m = 1 (рисунок 3). Это означает, что концентрация инжектированных носителей заряда меньше концентрации носителей, термически освобожденных из ловушечных энергетических уровней [6]. На участке II прямых ветвей ВАХ для образцов № 5 и № 4 m = 2 (рисунок 3). В рамках теории ТОПЗ это означает, что процессы переноса носителей заряда определяются влиянием моноэнергетического глубокого центра (ловушки) [6]. Для образцов № 9, № 14, № 1 на участке II m = 1,7-1,4 (рисунок 3), то есть выполняется условие 1 < m < 2. В рамках теории ТОПЗ это объясняется тем, что концентрация инжектированных носителей заряда становится сравнимой с концентрацией термически генерированных носителей с ловушек [6]. На участке III прямых ветвей ВАХ для всех образцов m = 1,2-1,3 (рисунок 3), здесь также концентрация инжектированных носителей заряда близка к концентрации термически генерированных носителей с ловушек [6]. На рисунке 3 следует отметить присутствие достаточно протяженных участков Іа и ІІа, которые расположены между линейными участками I – II и II – III, соответственно. На участках Ia и Иа показатель m меняется плавно. Это может свидетельствовать о том, что на процессы переноса носителей заряда оказывают влияние несколько групп ловушек с разными энергиями активации [6].

Обратные ветви ВАХ (рисунок 2) по качественному виду характерны для барьерных структур с так называемым «мягким» пробоем, и объясняются лавинным пробоем с участием ловушек, имеющих непрерывное распределение энергии активации [7].

Исследование вольт-фарадных характеристик

С целью получения информации о концентрации ловушек проводилось измерение ВФХ на частоте 1 МГц при обратном смещении. Для оценки влияния ловушек сравнивались ВФХ $C_{IN}(U)$, измеренные при прямом ходе развертки постоянного напряжения смещения от 0 до некоторого значения U_m , и ВФХ $C_{OUT}(U)$, измеренные при обратной развертке от U_m до 0. При отсутствии ловушек кривые $C_{IN}(U)$ и $C_{OUT}(U)$ должны полностью совпадать. При наличии ловушек наблюдается явление гистерезиса – кривые $C_{IN}(U)$ и $C_{OUT}(U)$ различаются [8].

На рисунке 4 представлены петли гистерезиса ВФХ для образцов № 1 и № 5. Для образцов № 1, № 2, а также № 10-№ 17 указанные характеристики имеют одинаковый характер, вследствие чего, на рисунке 4,а для определенности представлены ВФХ образца № 1. Для образцов № 3-№ 9 кривые гистерезиса ВФХ отличаются от образцов № 10-№17. На рисунке 4,6 для определенности приведены ВФХ образца № 5.

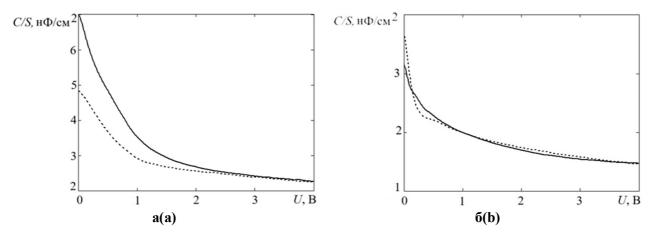


Рисунок 4 — Гистерезис обратных ветвей ВФХ для образцов № 1 (a) и № 5 (б) Figure 4 — Hysteresis of the reverse branches of the C-V characteristics for samples № 1 (a) and № 5 (b)

Анализируя полосу гистерезиса, образованную кривыми $C_{IN}(U)$ и $C_{OUT}(U)$, можно определить концентрацию ловушек N_t , находящихся в ОПЗ:

$$N_{t} = \frac{1}{qS} \int_{0}^{U_{T}} \frac{\left| C_{IN}(U) - C_{OUT}(U) \right|}{\left| W_{IN}(U) - W_{OUT}(U) \right|} dU,$$
(4)

где q — заряд электрона, S — площадь образца, $W_{IN}(U)$ и $W_{OUT}(U)$ — изменения толщины ОПЗ для прямой и обратной развертки постоянного напряжения смещения U, соответственно, U_m — предельное значение напряжения обратного смещения при измерении ВФХ [8]. Для всех образцов величина U_m составляла 4 В.

В выражении (4) значения $W_{IN}(U)$ и $W_{OUT}(U)$ вычисляются по формулам:

$$W_{IN}(U) = \frac{\varepsilon \varepsilon_0 S}{C_{IN}(U)}, \tag{5}$$

$$W_{OUT}(U) = \frac{\varepsilon \varepsilon_0 S}{C_{OUT}(U)}, \tag{6}$$

где ε_0 – диэлектрическая постоянная, ε – диэлектрическая проницаемость кремния [8]. Значения величин N_t исследуемых образцов, рассчитанные по формуле (4), представлены в таблице 1.

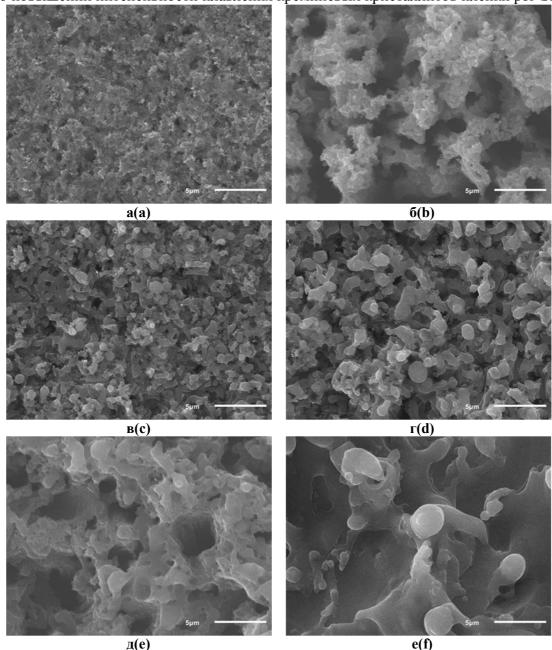
Исследуемые образцы условно разделены на три группы (таблица 1). В первую группу включен образец № 1, не подвергавшийся облучению лазером. Во вторую группу входят образцы, облученные лазером, для которых величина N_t не превышает 10^{14} см⁻³ (№ 2-№ 9). В третью группу включены облученные лазером образцы № 10-№ 17, у которых наблюдается существенный рост N_t по сравнению с образцами второй группы.

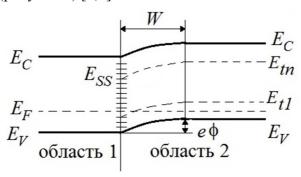
Исследование морфологии поверхности

С целью характеризации степени воздействия лазерного излучения на поверхность пленок por-Si проводились исследования морфологии с помощью растровой электронной микроскопии. Использовался электронный микроскоп JSM-6610LV (JEOL, Япония). Изображения поверхности пленок por-Si исследуемых образцов представлены на рисунке 5.

Облучение лазерными импульсами заметно изменяет морфологию пленки por-Si (рисунок 5). Пленка por-Si образца №1 образована массивами нитевидных кремниевых кристаллитов, ориентированных в направлении нормали к поверхности подложки. При этом отдельные блоки кристаллитов имеют резкие границы при выходе на фронтальную поверхность образца (рисунок 5, a). Наличие скругленных каплевидных образований на поверхности образца № 2 является результатом плавления кремниевых кристаллитов пленки por-Si (рисунок 5, δ). Увеличение средней энергии лазерного импульса E (таблица 1) приводит к более интенсив-

ному образованию каплевидных частиц и росту их размеров (рисунок 5, δ -e). Это свидетельствует о повышении интенсивности плавления кремниевых кристаллитов пленки por-Si.




Рисунок 5 — Изображения поверхности пленок por-Si образцов № 1 (a), № 2 (б), № 5 (в), № 9 (г), № 10 (д), № 17 (e) Figure 5 — Images of the por-Si film surface of samples № 1 (a), № 2 (b), № 5 (c), № 9 (d), № 10 (e), №17 (f)

Также рост E сопровождается увеличением толщины проплавленного слоя пленки por-Si (рисунок 5, δ -e). Для образцов третьей группы (таблица 1) плавление пленки por-Si протекает наиболее интенсивно по сравнению с образцами второй группы, о чем свидетельствует существенное отличие изображений на рисунке 5, δ -e0 от рисунок 5, δ -e0.

Обсуждение результатов эксперимента

Исследуемые образцы обладают выпрямляющими свойствами, величина коэффициента выпрямления K изменяется в пределах 1,8-125,2 (таблица 1). Эффект выпрямления можно объяснить возникновением барьерного слоя вблизи границы por-Si/p-Si за счет фиксации уровня Ферми на ловушках с энергетическими уровнями E_{SS} , сосредоточенными в припо-

верхностной области кремниевых кристаллитов. Такая ситуация характерна для полупроводниковых структур с пленками рог-Si, выращенными на монокристаллических кремниевых подложках методом металл-стимулированного травления [8]. Данную ситуацию иллюстрирует зонная диаграмма структуры рог-Si/p-Si в равновесном состоянии, представленная на рисунке 6. Здесь уровень Ферми E_F зафиксирован со стороны области 1, содержащей поверхностные состояния с энергетическими уровнями E_{SS} . Область пространственного заряда преимущественно находится в области 2 (монокристаллический кремний р-типа проводимости) (рисунок 6). Потенциальный барьер eф, определяемый изгибом зон в ОПЗ, обусловливает эффект выпрямления (рисунок 5) [5,8].

Pисунок 6 – Зонная диаграмма полупроводниковой структуры por-Si/p-Si Figure 6 – Band diagram of the semiconductor structure por-Si/p-Si

Ловушки оказывают существенное влияние на ВАХ исследуемых образцов. При прямом смещении ток определяется рекомбинацией носителей в ОПЗ с участием ловушек, также проявляется эффект ТОПЗ. При обратном смещении происходит лавинный пробой с участием ловушек, имеющих непрерывное распределение энергии активации.

Из таблицы 1 видно, что наибольшие значения высоты потенциального барьера $e\phi$ (0,25-0,58 эВ) отмечаются у образцов № 3-9 с наиболее низкими значениями N_t (5,66·10¹⁴-2,18·10¹⁴ см⁻³). Для образцов № 1, № 2, а также № 10-17 величина еф заметно ниже и изменяется в пределах 0,06-0,20 эВ. Здесь значения N_t выше $(1,26\cdot10^{15}-1,40\cdot10^{14} \text{ см}^{-3})$ (таблица 1). Также следует отметить, что для указанных групп образцов характер гистерезиса ВФХ заметно отличается (рисунок 4). Для образцов № 3-9 кривая $C_{OUT}(U)$ находится ниже практически всем диапазоне напряжений постоянного $C_{IN}(U)$ во (рисунок 4, а). Согласно [9], уменьшение емкости ОПЗ объясняется опустошением ловушек неосновных носителей заряда. Таким образом, для данной группы образцов электрофизические процессы определяются влиянием ловушек неосновных носителей. Для образцов № 1, № 2, № 10-17 на графике гистерезиса ВФХ (рисунок 4, б) наблюдаются области, где кривая $C_{OUT}(U)$ проходит выше $C_{IN}(U)$, что с точки зрения [9] свидетельствует о перезарядке ловушек основных носителей заряда. Также имеется область, где $C_{OUT}(U)$ меньше, чем $C_{IN}(U)$, здесь перезаряжаются ловушки неосновных носителей (рисунок 4, б). Таким образом, электрофизические процессы в образцах данной группы определяются влиянием обоих типов ловушек. Ловушки представлены глубокими энергетическими уровнями поверхностных состояний E_{SS} на границе областей 1 и 2 (рисунок 6), а также глубокими уровнями E_{tl} и E_{tn} в объеме области 2. Положение энергетических уровней ловушек на рисунке 6 показано условно, так как используемый метод не позволяет определить энергию активации ловушек, он дает информацию только о величине N_t .

Облучение лазером в указанных в таблице 1 режимах вызывает плавление кремниевых кристаллитов пленки рог-Si (рисунок 5). Присутствие жидкого изопропанола приводит к быстрому охлаждению расплава в приповерхностной области, что способствует образованию дефектов в приповерхностной области кремниевых кристаллитов. Как отмечается в [10], при этом может даже происходить образование тонкой пленки аморфного кремния на поверхности кремниевых кристаллитов рог-Si. В результате в приповерхностной области обра-

зуются дефекты с глубокими энергетическими уровнями (область 1 на рисунке 6). Это приводит к фиксации уровня Ферми на границе между областями 1 и 2 на рисунке 6. В результате образцы с пленками рог-Si, подвергнутыми облучению лазером, обладают выпрямляющими свойствами.

Выбирая режим облучения полупроводника лазерными импульсами, можно получить эффект лазерного отжига, приводящего к снижению концентрации дефектов [11]. Механизм отжига определяется нагревом облучаемой области с последующей рекристаллизацией [11]. Также можно инициировать процесс генерации дефектов [11]. При коротких импульсах (единицы наносекунд и менее) в твердом теле не успевает генерироваться достаточно большое число вакансий [11]. Таким образом, снижение величины N_t , наблюдаемое у образцов $\mathbb{N} 2 - \mathbb{N} 5$ по сравнению с образцом $\mathbb{N} 1$ (таблица 1), может быть вызвано эффектом лазерного отжига области 2 (рисунок 6) полупроводниковой структуры. Рост N_t для образцов $\mathbb{N} 6 - \mathbb{N} 17$ по сравнению с образцом $\mathbb{N} 5$ можно объяснить процессом генерации дефектов в области 2, который интенсифицируется с увеличением значений E и τ . В качестве дефектов, образующих глубокие энергетические уровни E_{t1} и E_{tn} в объеме области 2 (рисунок 6) могут выступать вакансии внугри кремниевых кристаллитов пленки рог-Si, а также примеси, возникающие в результате химических реакций, протекающих в результате облучения поверхности образцов, находящихся в контакте с изопропанолом.

Заключение

Исследовано влияние параметров режима облучения наносекундными лазерными импульсами иттербиевого волоконного лазера с длинной волны 1064 нм на динамику изменения концентрации дефектов с глубокими энергетическими уровнями. Показано, что облучение пленки рог-Si полупроводниковой структуры рог-Si/p-Si при длительности импульса 4 нс и средней энергии импульса 3,60·10⁻⁹ Дж приводит к снижению концентрации дефектов с глубокими энергетическими уровнями почти на два порядка величины. Дальнейшее увеличение длительности импульса и его средней энергии приводит к росту концентрации дефектов. Облучение лазером приводит к плавлению поверхностного слоя пленки рог-Si. Установлены механизмы процессов, управляющие изменением концентрации дефектов с глубокими энергетическими уровнями. Показано, что электрофизические характеристики исследуемой полупроводниковой структуры рог-Si/p-Si в значительной мере определяются ловушками с энергетическими уровнями, характеризующимися сложным распределением в области энергий активации.

Полученные результаты могут быть полезны при создании химических датчиков и фотовольтаических преобразователей солнечной энергии.

Работа выполнена с использованием оборудования регионального центра зондовой микроскопии коллективного пользования Рязанского государственного радиотехнического университета имени В.Ф. Уткина (РГРТУ), лазерная обработка поверхности экспериментальных образцов por-Si/p-Si проводилась на оборудовании ООО «Лазервариоракурс» (г. Рязань), полупроводниковые структуры por-Si/p-Si изготовлены в научно-исследовательской лаборатории технологии и физики полупроводниковых структур Рязанского государственного университета имени С.А. Есенина.

Библиографический список

- 1. Handbook of porous silicon. Edited by Leigh Canham. Springer International Publishing AG, part of Springer Nature, 2018, 1578 p.
- 2. **Русецкий М.С., Казючиц Н.М., Ивлев Г.Д.** Особенности воздействия мощных лазерных импульсов на слои пористого кремния // Сб. науч. тр. III Междунар. науч. конф., (Минск, Республика Беларусь, 2008). С. 150-152.
- 3. **Сорокин Л.М., Соколов В.И., Бурцев А.П., Калмыков А.Е., Григорьев Л.В.** Модификация пористого кремния в результате лазерного воздействия // Письма в ЖТФ. 2007, 33 (24). С. 69-75.

- 4. **Рыбина Н.В., Рыбин Н.Б., Хилов В.С., Трегулов В.В., Горбунова Ю.Н.** Влияние режимов облучения наносекундным иттербиевым лазером на морфологию пленок пористого кремния // Журнал технической физики. 2024. 94(5). С. 817-822.
 - 5. **Зи С.М.** Физика полупроводниковых приборов: Пер. с англ.: в 2 т. т. Т.1. М.: Мир, 1984. 456 с.
 - 6. Ламперт М., Марк П. Инжекционные токи в твердых телах. М., Мир, 1973, 416 с.
 - 7. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. М., Высш. Шк., 1987, 479 с.
- 8. **Трегулов В.В., Скопцова Г.Н., Рыбин Н.Б., Рыбина Н.В.** Влияние отжига на механизмы переноса носителей заряда в полупроводниковой структуре с пленкой пористого кремния // Вестник Рязанского государственного радиотехнического университета. 2023. № 84. С. 215-224.
- 9. **Берман Л.С., Лебедев А.А.** Емкостная спектроскопия глубоких центров в полупроводниках. Л.: Наука, 1981. 176 с.
- 10. **Мельник Н.Н., Трегулов В.В., Хилов В.С., Рыбина Н.В., Рыбин Н.Б., Косцов Д.С.** Новый способ получения пленок аморфного кремния с резонансом Фано // Краткие сообщения по физике ФИАН. 2024. № 11. С. 52-60.
- 11. **Мирзоев Ф.Х., Панченко В.Я., Шелепин Л.А.** Лазерное управление процессами в твердом теле // Успехи физических наук, 1996. Т. 166. № 1. С. 3-32.

UDC 538.958:535.8

ELECTROPHYSICAL PROPERTIES OF SEMICONDUCTOR STRUCTURE WITH POROUS SILICON FILM IRRADIATED WITH NANOSECOND YTTERBIUM LASER

V. S. Khilov, graduate student, department of Physics, RSU named for S. Yesenin, Ryazan, Russia; orcid.org/0009-0002-1673-8029, e-mail: laservr@yandex.ru

V. V. Tregulov, Dr. Sc. (tech.), professor, department of Physics, RSU named

for S. Yesenin, Ryazan, Russia;

orcid.org/0009-0001-1441-6918, e-mail: trww@yandex.ru

А. И. Иванов, graduate student, department of Physics, RSU named for S. Yesenin, Ryazan, Russia; orcid.org/0009-0002-7637-1433, e-mail: alex2012-14@yandex.ru

N. V. Rybina, Ph.D. (Phys. and Math.), associate professor, associate professor, department of Micro- and Nanoelectronics, RSREU, Ryazan, Russia;

orcid.org/0000-0003-0377-5605, e-mail: pgnv@mail.ru

N B. Rybin, Ph.D. (Phys. and Math.), associate professor, associate professor, department of Micro- and Nanoelectronics, RSREU, Ryazan, Russia;

orcid.org/0000-0003-2000-0158, e-mail: nikolay.rybin@yandex.ru

The effect of irradiation mode parameters with nanosecond laser pulses of ytterbium fiber laser with a wavelength of 1064 nm on the dynamics of changes in concentration of defects with deep energy levels is studied. It is shown that irradiation of por-Si film of por-Si/p-Si semiconductor structure at pulse duration of 4 ns and average pulse energy of $3.60 \cdot 10^{-9}$ J leads to a decrease in concentration of defects with deep energy levels by almost two orders of magnitude. A further increase in pulse duration and its average energy leads to an increase in defect concentration. Laser irradiation leads to melting of surface layer of por-Si film. The mechanisms of processes controlling the change in concentration of defects with deep energy levels are established. The authors show that electrophysical characteristics of the studied por-Si/p-Si semiconductor structure are largely determined by traps with energy levels characterized by complex distribution in the region of activation energies.

Keywords: porous silicon, nanosecond laser pulses, current-voltage characteristics, capacitance-voltage characteristics, deep energy levels, generation-recombination processes.

DOI: 10.21667/1995-4565-2025-91-256-266

References

- 1. Handbook of porous silicon. Edited by Leigh Canham. Springer International Publishing AG, part of Springer Nature, 2018, 1578 p.
- 2. **Ruseczkij M.S., Kazyuchicz N.M., Ivlev G.D.** Osobennosti vozdejstviya moshhny'x lazerny'x impul'sov na sloi poristogo kremniya. *Sb. nauch. tr. III Mezhdunar. nauch. konf.*, Minsk, Respublika Belarus'. 2008, pp. 150-152. (in Russian).
- 3. **Sorokin L.M., Sokolov V.I., Burcev A.P., Kalmykov A.E., Grigor`ev L.V.** Modifikaciya poristogo kremniya v rezul`tate lazernogo vozdejstviya. *Pis`ma v ZhTF*. 2007. 33 (24), pp. 69-75. (in Russian).
- 4. **Ry`bina N.V., Ry`bin N.B., Xilov V.S., Tregulov V.V., Gorbunova Yu.N.** Vliyanie rezhimov oblucheniya nanosekundny`m itterbievy`m lazerom na morfologiyu plenok poristogo kremniya. *Zhurnal texnicheskoj fiziki*. 2024, 94(5), pp. 817-822. (in Russian).
 - 5. **Zi S.M.** Fizika poluprovodnikovy x priborov: Per. s angl.: v 2 t.t. vol.1, Moscow: Mir. 1984. 456 p.
 - 6. Lampert M., Mark P. Inzhekcionny e toki v tverdy x telax. Moscow: Mir, 1973, 416 p.
 - 7. Pasy'nkov V.V., Chirkin L.K. Poluprovodnikovy'e pribory. Moscow: Vy'ssh. Shk., 1987, 479 p.
- 8. **Tregulov V.V., Skopczova G.N., Ry'bin N.B., Ry'bina N.V.** Vliyanie otzhiga na mexanizmy' perenosa nositelej zaryada v poluprovodnikovoj strukture s plenkoj poristogo kremniya. *Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta*. 2023, no. 84, pp. 215-224. (in Russian).
- 9. **Berman L.S., Lebedev A.A.** *Emkostnaya spektroskopiya glubokix centrov v poluprovodnikax.* L.: Nauka, 1981. 176 p. (in Russian).
- 10. **Mel'nik N.N., Tregulov V.V., Xilov V.S., Ry'bina N.V., Ry'bin N.B., Kosczov D.S.** Novy'j sposob polucheniya plenok amorfnogo kremniya s rezonansom Fano. *Kratkie soobshheniya po fizike FIAN*. 2024. no. 11, pp. 52-60. (in Russian).
- 11. **Mirzoev F.X., Panchenko V.Ya., Shelepin L.A.** Lazernoe upravlenie processami v tverdom tele. *Uspexi fizicheskix nauk.* 1996, vol. 166, no. 1, pp. 3-32. (in Russian).