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Рассматривается задача разработки адаптивных математических моделей и алгоритмов для 
обеспечения киберфизической безопасности и оптимизации взаимодействия интеллектуальных объ-
ектов в сетях промышленного Интернета вещей (IIoT). Целью работы является создание энер-
гоэффективных и устойчивых к сбоям и атакам решений для управления сетевым трафиком, защи-
ты микроконтроллеров и отслеживания объектов. Разработана адаптивная модель управления 
трафиком на основе графовых нейронных сетей (GNN), обеспечивающая снижение задержек на  
15 – 20 % и энергопотребления на 10 – 15 % по сравнению с протоколами AODV и RPL, протестиро-
ванная в среде NS-3. Предложены методы кибербезопасности микроконтроллеров, включающие ал-
горитм машинного обучения (LSTM) для обнаружения аномалий с точностью 95 % и криптографи-
ческую защиту прошивок, протестированные на платформе STM32 в эмуляторе QEMU. Разработа-
на модель интеграции RFID и блокчейна для отслеживания объектов с точностью 99 % и энергопо-
треблением менее 5 Вт, протестированная на Hyperledger Fabric. Создан алгоритм комплексной 
оценки эффективности IIoT, объединяющий показатели безопасности, энергопотребления и произ-
водительности с точностью прогноза 90 %. Определяется влияние гетерогенности сетей, пара-
метров протоколов и технологий на ключевые метрики производительности и безопасности. Прак-
тическая значимость заключается в возможности выбора оптимальных технологий и повышении 
безопасности и эффективности IIoT-систем. 
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Введение 
Промышленный Интернет вещей (IIoT) трансформирует производственные процессы, 

обеспечивая интеллектуальное взаимодействие устройств в гетерогенных сетях. Однако рост 
числа подключённых объектов увеличивает риски киберугроз, повышает требования к энер-
гоэффективности и усложняет управление сетевым трафиком. Разработка адаптивных мате-
матических моделей и алгоритмов, способных одновременно обеспечивать киберфизиче-
скую безопасность, оптимизировать производительность и минимизировать энергопотребле-
ние, является актуальной научной задачей. Особое значение приобретают методы, учитыва-
ющие гетерогенность IIoT, включающую разнообразие протоколов, устройств и технологий, 
таких как RFID и блокчейн.  

В статье представлены результаты исследования, направленного на решение этих про-
блем. Разработаны адаптивные модели управления сетевым трафиком на основе графовых 
нейронных сетей (GNN), методы кибербезопасности микроконтроллеров с использованием 
машинного обучения (LSTM) и криптографии, а также модель интеграции RFID и блокчейна 
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для энергоэффективного отслеживания объектов. Предложены алгоритм комплексной оцен-
ки эффективности IIoT, объединяющий показатели безопасности, энергопотребления и про-
изводительности, и классификация протоколов, учитывающая их гетерогенность. Новизна 
работы заключается в интеграции современных методов искусственного интеллекта, крипто-
графии и блокчейна для повышения устойчивости и эффективности IIoT-систем.  

Практическая значимость определяется возможностью применения результатов для выбо-
ра оптимальных технологий и обеспечения безопасности критически важных инфраструктур.  

Обзор существующих подходов 
В рамках теоретических исследований решается задача разработки адаптивных матема-

тических моделей и алгоритмов, направленных на обеспечение киберфизической безопасно-
сти и оптимизацию взаимодействия интеллектуальных объектов в сетях промышленного Ин-
тернета вещей (IIoT). Задача включает создание модели управления сетевым трафиком на 
основе графовых нейронных сетей (GNN) для минимизации задержек и энергопотребления, 
разработку методов кибербезопасности микроконтроллеров с применением алгоритмов ма-
шинного обучения (LSTM) и криптографической защиты, а также модели интеграции RFID и 
блокчейна для высокоточного отслеживания объектов. Кроме того, предполагаются разра-
ботка алгоритма комплексной оценки эффективности IIoT-систем с учетом показателей без-
опасности, энергопотребления и производительности, а также классификация протоколов и 
технологий IIoT с анализом влияния их параметров на ключевые метрики, что обеспечивает 
повышение безопасности и энергоэффективности систем для их практического применения. 

Управление сетевым трафиком в IIoT критически важно для обеспечения низких задер-
жек, высокой надёжности и энергоэффективности в гетерогенных сетях. Наиболее распро-
странёнными протоколами маршрутизации в настоящее время являются AODV (Ad-hoc On-
Demand Distance Vector) и RPL (Routing Protocol for Low-Power and Lossy Networks). 

Реактивный протокол AODV формирует маршруты по запросу, минимизируя накладные 
расходы на поддержание топологии сети [1]. Он эффективен в небольших сетях, но демон-
стрирует высокие задержки при увеличении числа узлов и не адаптируется к сбоям или ата-
кам, таким как атаки типа «чёрная дыра». Исследования показывают, что в гетерогенных 
IIoT-сетях AODV теряет производительность из-за отсутствия механизмов динамической 
адаптации [2]. 

Протокол RPL, созданный для сетей с низким энергопотреблением, применяет направ-
ленный ациклический граф (DAG) для организации маршрутизации [3]. Он устойчив к поте-
рям пакетов, но его производительность ухудшается при высокой нагрузке или в условиях 
атак, таких как Sybil или Rank Attack. Кроме того, RPL не оптимизирован для гетерогенных 
сетей с различными типами устройств [4]. 

Графовые нейронные сети (GNN) в настоящее время применяются для маршрутизации в 
IIoT [5]. GNN позволяют учитывать топологию сети и динамически адаптироваться к измене-
ниям, анализируя графовые структуры. Например, Jiang et al. [5] предложили модель на основе 
GNN для оптимизации маршрутов в беспроводных сенсорных сетях, достигая снижения за-
держек на 10 % по сравнению с традиционными подходами. Однако существующие работы 
редко интегрируют GNN с метриками энергоэффективности и устойчивости к атакам, что 
ограничивает их применимость в IIoT. Кроме того, тестирование таких моделей часто прово-
дится на упрощённых сценариях, игнорируя гетерогенность устройств и протоколов. 

Протоколы AODV и RPL не обеспечивают достаточной адаптивности в динамичных и 
гетерогенных IIoT-сетях. Модели на основе GNN, хотя и перспективны, требуют дальнейшей 
оптимизации для учёта энергопотребления и устойчивости к киберугрозам. 

Микроконтроллеры, такие как STM32, являются основой устройств IIoT, но их ограни-
ченные вычислительные ресурсы усложняют обеспечение безопасности. Благодаря своей 
энергоэффективности и высокой производительности STM32 широко применяются в 
устройствах IIoT для реализации адаптивных моделей и алгоритмов, обеспечивающих без-
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опасность и оптимизацию взаимодействия в сетях. Например, в системах мониторинга про-
мышленного оборудования STM32 используются для обработки данных с датчиков в режиме 
реального времени, реализации криптографических протоколов, таких как AES и RSA, и вы-
полнения алгоритмов машинного обучения для обнаружения аномалий. Ограниченные вы-
числительные ресурсы STM32 требуют оптимизированных решений, таких как легковесные 
криптографические библиотеки или адаптивные модели с пониженной вычислительной 
сложностью, что позволяет эффективно обеспечивать защиту прошивок и данных в распре-
делённых сетях IIoT, сводя к минимуму энергопотребление и сохраняя высокую надёжность 
системы. 

Существующие подходы можно разделить на криптографические и основанные на ма-
шинном обучении. Криптографические методы включают алгоритмы, такие как AES 
(Advanced Encryption Standard) и RSA (Ravi-Shamir-Adleman), для защиты прошивок и дан-
ных [6]. Например, авторы исследования [6] предложили использование облегчённых крип-
тографических протоколов для микроконтроллеров, таких как ECDSA, которые снижают 
энергопотребление, но не решают проблему обнаружения аномалий в реальном времени. Эти 
методы уязвимы к атакам на физическом уровне, например, к атакам по сторонним каналам 
(Side-Channel Attacks). 

Методы на основе машинного обучения применяются для обнаружения аномалий в по-
ведении устройств. Алгоритмы, такие как Support Vector Machine (SVM) [7] и Random Forest 
[8], достигают точности до 90 % при анализе сетевого трафика или логов устройств. Однако 
они требуют значительных вычислительных ресурсов, что делает их неприменимыми для 
микроконтроллеров с ограниченной памятью и процессорной мощностью. Сети с долгосроч-
ной и краткосрочной памятью (LSTM), предложенные авторами, эффективно анализируют 
временные ряды в системах Интернета вещей, обеспечивая точность до 92 % при обнаруже-
нии атак, таких как DDoS [9]. Тем не менее, интеграция LSTM с криптографическими мето-
дами остаётся редкостью, что ограничивает комплексную защиту. 

Гибридные подходы пытаются объединить криптографию и машинное обучение, но их 
реализация на микроконтроллерах осложнена из-за высоких требований к ресурсам [10]. 
Например, тестирование данных систем в эмуляторах, таких как QEMU, показывает ограни-
ченную масштабируемость в реальных условиях. 

Криптографические методы не обеспечивают обнаружение аномалий, а методы машин-
ного обучения требуют оптимизации для микроконтроллеров. Отсутствие интеграции этих 
подходов снижает их эффективность в IIoT. 

Технологии RFID и блокчейн активно используются для отслеживания объектов в IIoT, 
особенно в цепочках поставок. Однако их энергоэффективность и производительность тре-
буют доработки. 

Как известно, RFID широко применяется для идентификации и отслеживания объектов 
[11]. Современные RFID-системы обеспечивают высокую точность (до 98 %), но их энерго-
потребление остаётся высоким, особенно в условиях плотного размещения меток. Авторы 
исследования [11] предложили оптимизированные протоколы для RFID, снижающие энерго-
потребление на 5 – 7 %, но они не учитывают интеграцию с другими технологиями. 

Блокчейн, такой как Hyperledger Fabric, используется для обеспечения прозрачности и 
безопасности данных в цепочках поставок [12]. Автор показал, что блокчейн повышает 
надёжность отслеживания, но его вычислительная сложность и энергопотребление ограни-
чивают применение в IIoT. Например, реализация смарт-контрактов на Hyperledger Fabric 
требует мощных серверов, что не подходит для энергоэффективных систем. 

Интеграция RFID и блокчейна позволяет создавать децентрализованные системы отсле-
живания с высокой точностью [13]. Авторы исследования предложили модель, объединяю-
щую RFID и Ethereum, но её энергопотребление превышает 10 Вт, что неприемлемо для IIoT 
[13]. Модели, оптимизированные для Hyperledger Fabric, встречаются реже и не учитывают 
энергоэффективность в реальном времени. 
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RFID-системы не оптимизированы для низкого энергопотребления, а блокчейн-решения 
требуют значительных ресурсов. Интеграция этих технологий редко учитывает требования 
IIoT к реальному времени и энергоэффективности. 

Таким образом, комплексная оценка эффективности IIoT-систем требует учёта безопас-
ности, энергопотребления и производительности. Существующие подходы часто фокусиру-
ются на отдельных метриках. 

Метрики производительности включают задержки, пропускную способность и надёж-
ность сети [14]. В работе [14] предложена модель оценки производительности на основе QoS 
(Quality of Service), но она не учитывает безопасность или энергопотребление. 

Метрики энергопотребления анализируются в работах, таких как [15], где авторы пред-
ложили модель для оценки энергопотребления сенсорных сетей. Однако эти модели не инте-
грированы с показателями безопасности. 

Метрики безопасности сосредоточены на устойчивости к атакам и целостности данных 
[16]. Подходы, подобные [16], используют вероятностные модели для оценки уязвимостей, 
но их точность не превышает 85 % на синтетических данных. 

Комплексные подходы пытаются объединить метрики, но редко учитывают гетероген-
ность IIoT [17]. Например, модель, предложенная в [17], оценивает производительность и 
энергопотребление, но игнорирует безопасность, что снижает её применимость. 

Отсутствие универсальных моделей, объединяющих безопасность, энергопотребление и 
производительность, ограничивает точность оценки IIoT-систем. Для преодоления этих 
ограничений требуется систематизация подходов, позволяющая выявить наиболее эффек-
тивные решения. Классификация протоколов и технологий IIoT необходима для выбора оп-
тимальных решений. Существующие подходы включают в себя следующее: 

– классификация по производительности анализирует протоколы, такие как MQTT, 
CoAP и HTTP/2, с точки зрения задержек и пропускной способности [18]. Авторы [18] пред-
ложили сравнительный анализ, но он не включает метрики безопасности; 

– классификация по энергопотреблению фокусируется на протоколах для низкоэнерге-
тических сетей, таких как 6LoWPAN. Однако эти классификации игнорируют гетероген-
ность устройств; 

– классификация по безопасности рассматривает устойчивость протоколов к атакам, но 
не учитывает их влияние на производительность или энергопотребление. 

Существующие классификации редко интегрируют три ключевые метрики (безопас-
ность, энергопотребление, производительность) и не учитывают гетерогенность IIoT-систем, 
что снижает их практическую значимость. 

Анализ существующих подходов выявил следующие пробелы: 
– недостаточная адаптивность маршрутизации: AODV и RPL не обеспечивают устойчи-

вости к атакам и гетерогенности, а GNN-модели требуют интеграции с энергоэффективно-
стью; 

– ограничения кибербезопасности микроконтроллеров: отсутствие интеграции машинно-
го обучения (LSTM) и криптографии для энергоэффективных устройств; 

– высокое энергопотребление RFID и блокчейна: отсутствие моделей, оптимизирован-
ных для реального времени и низкого энергопотребления; 

– фрагментарность оценки эффективности: отсутствие комплексных моделей, объеди-
няющих безопасность, энергопотребление и производительность; 

– неполная классификация протоколов: игнорирование гетерогенности и комплексных 
метрик. 

Разработка адаптивных моделей и алгоритмов 
Для устранения вышеизложенных проблем предлагаются следующие пути: 
– разработка адаптивной модели маршрутизации на основе GNN, снижающей задержки 

и энергопотребление; 
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– интеграция LSTM и криптографии для микроконтроллеров, направленная на повыше-
ние точности обнаружения аномалий; 

– создание энергоэффективной модели RFID и блокчейна с низким энергопотреблением; 
– разработка алгоритма комплексной оценки эффективности. 
Для систематизации предложенного подхода и обеспечения воспроизводимости резуль-

татов разработан универсальный алгоритм построения адаптивных моделей.  
Для оптимизации маршрутизации в гетерогенных сетях IIoT разработана адаптивная ма-

тематическая модель, использующая графовые нейронные сети (GNN). Модель учитывает 
топологию сети, динамические изменения и киберугрозы, такие как атаки типа «чёрная ды-
ра».  

Сеть представлена как ориентированный граф 
 ( , ) ( , ) ( , ),i iG f V E G V E G V E     
где ௜ܸ – узлы (устройства IIoT); ܧ௜ – связи между ними (рисунок1). 

 
Рисунок 1  Граф сети IIoT для оптимизации маршрутизации 

Figure 1 – IIoT network graph for routing optimization 

Сеть GNN обучается на данных о трафике, задержках и энергопотреблении, используя 
метрики, такие как пропускная способность и потери пакетов. 

Для динамической маршрутизации в сетях IIoT предлагается алгоритм на основе усилен-
ного обучения, например Q-Learning, который адаптируется к сбоям и атакам, минимизируя 
функцию потерь. Оптимизация осуществляется с помощью метода градиентного спуска, что 
обеспечивает баланс между производительностью, энергопотреблением и безопасностью: 
 ,L S P E         (1) 
где α, β, γ – безразмерные весовые коэффициенты (ߙ + ߚ + ߛ = 1); оптимизированные с по-
мощью метода градиентного спуска; S – нормированный показатель безопасности, отража-
ющий устойчивость к атакам и изменяющийся в диапазоне [0,1], где 1– полная устойчивость; 
P – нормированный показатель производительности, учитывающий задержку и потери паке-
тов; E – нормированный показатель энергопотребления.  
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Нормировка частных показателей S, P и E проводится линейно к диапазону [0,1] на осно-
ве эталонных максимальных и минимальных значений, полученных из симуляций и литера-
туры [14, 15], чтобы обеспечить сопоставимость метрик с разными единицами измерения. 
Обобщенный показатель L служит единой целевой функцией для скалярной многофакторной 
оптимизации, для достижения оптимального баланса. 

Оптимизация обобщенного критерия L, учитывающего три нормализованных фактора 
(безопасности S, производительности P и энергопотребления E), проводилась методом гра-
диентного спуска в процессе обучения модели маршрутизации на основе графовых нейрон-
ных сетей, что позволило адаптивно балансировать приоритеты системы в зависимости от 
сценария применения (например, повышение устойчивости для критически важных прило-
жений или снижение энергозатрат для автономных узлов). 

Модель позволяет повысить производительность и энергоэффективность IIoT-сетей в 
критических приложениях, таких как автоматизация производства. Интеграция GNN для 
адаптивной маршрутизации в IIoT учитывает гетерогенность сети. Устойчивость к сбоям и 
атакам обеспечивается динамическим анализом топологии. 

Для защиты микроконтроллеров в IIoT разработаны методы, сочетающие машинное обу-
чение (LSTM) и криптографию, обеспечивающие обнаружение аномалий и защиту прошивок. 

С целью обнаружения аномалий использована рекуррентная нейронная сеть LSTM для 
анализа временных рядов данных (трафик, энергопотребление, системные логи). Модель 
обучается на нормальном поведении устройства, формируя базовые паттерны, и выявляет 
отклонения, такие как DDoS-атаки или несанкционированный доступ. Обучение проводится 
с использованием метода градиентного спуска.  

Криптографическая защита реализована в виде облегчённого алгоритма шифрования 
(ChaCha20) для защиты прошивок и данных, передаваемых между микроконтроллерами и 
шлюзами.  

Новизна решения представлена интеграцией LSTM и криптографии в ресурсозатратных 
микроконтроллерах, высокой точностью обнаружения аномалий при минимальных вычисли-
тельных затратах. 

Предложенное решение применимо для защиты устройств IIoT в энергетике, транспорте 
и промышленности, где требуется высокая надёжность. 

Для энергоэффективного отслеживания объектов в IIoT разработана модель, интегриру-
ющая технологии RFID и блокчейн (Hyperledger Fabric). 

Модель включает формулу энергопотребления: 
 C C C C ,total RFID Blockchain transmit    (2) 
где CRFID  – энергопотребление RFID-меток; CBlockchain  – энергозатраты на смарт-контракты; 
Ctransmit  – энергозатраты на передачу данных. 

RFID-метки оптимизированы для работы в режиме низкого энергопотребления (менее 
2 мВт). Блокчейн (Hyperledger Fabric) используется для записи данных об объектах, обеспе-
чивая прозрачность и защиту от подделки. 

Решение применимо в логистике, цепочках поставок и умных складах, где требуются вы-
сокая точность и низкое энергопотребление. Новизна заключается в энергоэффективной ин-
теграции RFID и блокчейна для отслеживания в реальном времени, оптимизированной моде-
ли энергопотребления для IIoT. 

Определение интегрального показателя эффективности осуществлялось на основе нор-
мализованных метрик безопасности, производительности и энергопотребления. Для показа-
теля безопасности учитывались устойчивость к атакам (доля успешно обнаруженных  
DDoS-атак и «чёрных дыр») и целостность данных, для производительности – средние за-
держки передачи и пропускная способность, для энергопотребления – среднее значение за-
трат на один узел или технологию. Весовые коэффициенты α, β, γ подбирались с использова-
нием регрессионного анализа по синтетическим данным (1000 сценариев), что обеспечивало 
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согласование интегральной оценки с приоритетами системы (например, безопасность в кри-
тически важных приложениях или энергоэффективность в автономных сетях). Такой подход 
позволил формализовать выбор подходящей комбинации технологий и протоколов для гете-
рогенных IIoT-систем. 

Безопасность оценивается по устойчивости к атакам, энергопотребление – по среднему 
потреблению узлов, производительность – по задержкам и пропускной способности. Показа-
тель безопасности ܵ (в диапазоне [0,1]) вычисляется следующим образом: 
 (1 ) ,n nS A C      (3) 

где nA  – нормированная доля успешно обнаруженных атак (
100

АА   процент успешно – ܣ ;

обнаруженных атак); nC  – нормированный показатель целостности данных ( [0,1]nC  , полу-
ченный аналогичным линейным масштабированием из исходных метрик целостности, 
например доли сохраненных данных без искажений); ,   – безразмерные весовые коэффи-
циенты, отражающие относительную важность обнаружения атак и обеспечения целостности 
данных, ߜ ≥ 0 (коэффициенты подбираются экспертами или оптимизацией в зависимости от 
приоритетов системы, например ߜ = 0,6, для акцента на обнаружение атак). Нормирование 
обеспечивает сопоставимость компонентов и конечное значение [0,1]S  , где единица соот-
ветствует полной безопасности. 

В рамках данного исследования для комплексной оценки производительности был раз-
работан нормализованный показатель, объединяющий ключевые сетевые характеристики – 
задержку и пропускную способность. Показатель производительности вычисляется согласно 
выражению: 

 1 (1 ) 1
100

p

max

LDP
D

 
   

       
  

, (4) 

где D – средняя задержка передачи пакетов (мс); 100 мсmaxD   – эталонное максимальное 
значение задержки на основе [14]; pL  – процент потерянных пакетов; ߠ – безразмерные весо-
вые коэффициенты, отражающие важность задержки и пропускной способности, ߠ ≥ 0 (ко-
эффициенты подбираются в зависимости от приоритетов системы, например ߠ = 0,5, для 
равного учета обоих факторов или ߠ = 0,7 в системах, чувствительных к задержкам). Нор-
мирование компонентов обеспечивает значение ܲ ∈ [0,1], где единица соответствует макси-
мальной производительности. 

Нормализация вида 1
max

D
D

  обеспечивает приведение разнородных метрик к единому 

безразмерному масштабу, а весовые коэффициенты позволяют гибко учитывать приоритеты 
конкретного приложения IIoT (например, чувствительность к задержкам или надежность до-
ставки данных). Предложена метрика оценки производительности (4), синтезированная на 
основе анализа требований к гетерогенным сетям IIoT. Выбор метрик задержки и доставки 
пакетов обусловлен их критической важностью для задач промышленной автоматизации, а 
введение весовых коэффициентов отражает субъективные предпочтения при проектирова-
нии системы. 

Нормированный показатель энергопотребления E может быть определен следующим об-
разом: 

 1
max

CE
C

  , (5) 

где C  – энергопотребление (Вт); maxC  = 3,0 Вт – эталонное максимальное значение энергопо-
требления из сравнительных тестов [15].  



 Вестник РГРТУ. 2025. № 94 / Vestnik of RSREU. 2025. No 94 28

Алгоритм оценки эффективности IIoT-систем отражает общую методологию, может 
быть использован для проектирования различных сценариев цифровых систем и включает 
следующие шаги:  

Шаг 1. Анализ предметной области 
 Определить типы устройств, протоколов и технологий, участвующих в гетерогенной 

IIoT-сети. 
 Сформировать требования: минимизация задержек, энергоэффективность, устойчивость 

к кибератакам и их весовые коэффициенты. 
Шаг 2. Формализация ключевых метрик 
 Выбрать метрики производительности (задержка, пропускная способность). 
 Определить метрики безопасности (устойчивость к атакам, целостность данных). 
 Задать показатели энергопотребления (среднее потребление узла, энергозатраты техно-

логий). 
Шаг 3. Построение математических моделей 
 Для маршрутизации – использовать графовую модель сети ( , ) ( , ) ( , )G V E G V E G V E   ; 
 Для прогнозирования и адаптации – обучить модель на основе GNN с учётом трафика, 

задержек и атак. 
 Для защиты микроконтроллеров – интегрировать LSTM для анализа временных рядов 

и облегчённую криптографию (например, ChaCha20). 
 Для отслеживания объектов – объединить RFID с блокчейном, учитывая энергоэффек-

тивность. 
Шаг 4. Оптимизация моделей 
 Настроить функцию потерь, учитывающую три критерия: безопасность (S), производи-

тельность (P), энергопотребление (E). 
 Использовать методы градиентного спуска или регрессионный анализ для подбора ве-

сов. 
Шаг 5. Тестирование и валидация 
 Смоделировать сеть в NS-3 для анализа маршрутизации. 
 Проверить работу микроконтроллеров в QEMU. 
 Протестировать систему отслеживания на Hyperledger Fabric. 
 Оценить точность, задержки, энергопотребление и устойчивость к сбоям. 
Шаг 6. Комплексная оценка эффективности 
 Вычислить интегральный показатель эффективности.  
 Сравнить результаты с эталонными протоколами (AODV, RPL и др.). 
Шаг 7. Классификация технологий 
 Ранжировать протоколы и технологии (MQTT, CoAP, RPL, NB-IoT и др.) по трём клю-

чевым показателям качества. 
 Использовать метод анализа иерархий (AHP) для выбора оптимальной комбинации 

технологий под конкретный сценарий. 
Результат выполнения алгоритма: 
 получение оптимизированной IIoT-системы, устойчивой к кибератакам, энергоэффек-

тивной и производительной; 
 возможность воспроизводимого выбора технологий и протоколов для практического 

применения. 
Предложенный алгоритм задаёт универсальную последовательность действий, которая 

обеспечивает воспроизводимость процесса проектирования и выбора решений. На его основе 
проведены экспериментальные исследования в средах NS-3, QEMU и Hyperledger Fabric. 

Экспериментальные исследования 
Проверка эффективности осуществлялась в среде NS-3. Для моделирования сбоев преду-

сматривалось отключение до 30 % узлов (сенсоров, актуаторов, шлюзов), что имитировало 
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отказ оборудования. Атаки на сеть воспроизводились в двух вариантах: атака типа DDoS – 
перегрузка узлов избыточным трафиком и атака «чёрная дыра» – утрата транзитных данных 
через компрометированный узел. Эти сценарии позволили количественно оценить устойчи-
вость предложенной модели, подтвердив её способность поддерживать работоспособность 
сети при внешних воздействиях. 

Для оценки производительности предложенной адаптивной модели управления сетевым 
трафиком на основе GNN использовался симулятор NS-3 – открытое программное обеспече-
ние для дискретно-событийного моделирования компьютерных сетей, обеспечивающее вы-
сокую точность анализа протоколов и топологий в гетерогенных системах, таких как сети 
IIoT. В NS-3 была смоделирована сеть из 50 узлов, включающая сенсоры, актуаторы и шлю-
зы с различными характеристиками (пропускная способность, энергопотребление, типы тра-
фика). Тестирование проводилось с измерением таких показателей качества, как задержка, 
энергопотребление, устойчивость к сбоям и атакам, в следующих сценариях: 

– нормальной работы; 
– режим сбоев (до 30 % узлов); 
– режим кибератак (DDoS, «чёрная дыра»). 
Модель GNN, интегрированная в NS-3 через пользовательские модули, оптимизировала 

маршруты, минимизируя функцию потерь (1), с весами α, β, γ, подобранными градиентным 
спуском. 

Веса α, β, γ нормированы (α + β + γ = 1), подбирались в две стадии: первоначальный по-
исковый перебор по сетке значений с последующей тонкой настройкой методом градиентно-
го спуска на синтетических и эталонных сценариях в NS-3. Для представленных в таблице 1 
результатов использованы значения α = 0,30, β = 0,45, γ = 0,25, что отражает приоритет сни-
жения задержек при сохранении высокого уровня безопасности и энергоэффективности. При 
необходимости веса могут смещаться в сторону энергосбережения или безопасности, в зави-
симости от требований приложения. 

Результаты, подтверждённые в NS-3, показали снижение задержек на 15 – 20 % (45 мс 
против 55 мс и 60 мс для AODV и RPL) и энергопотребления на 10 – 15 % (2,5 Вт против 
2,9 Вт и 3,0 Вт), а также повышение устойчивости к сбоям (95 %) и атакам (90 %), что де-
монстрирует эффективность предложенной модели в гетерогенных IIoT-сетях. 

Сравнение средней задержки передачи пакетов (мс) для предложенной модели GNN, 
AODV и RPL производилось в различных сценариях: нормальная работа, сбои, атаки DDoS. 
Полученные результаты для сценария атаки DDoS продемонстрированы на рисунке 2. 

 
Рисунок 2  График зависимости средней задержки от числа узлов для разных протоколов  

Figure 2 – Graph of average delay as a function of the number of nodes for different protocols 

Сравнение GNN, AODV и RPL по метрикам: задержка (мс), энергопотребление (Вт), 
устойчивость к сбоям (% потерянных пакетов), устойчивость к атакам (успешное обнаруже-
ние, %) отражены в таблице 1 для случая 30 узлов. 
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Таблица 1  Сравнение GNN, AODV и RPL по метрикам  
Table 1 – Comparison of GNN, AODV, and RPL by metrics 

Протокол Задержка, 
(мс) 

Энергопотребление, 
(Вт) 

Устойчивость 
к сбоям, (%) 

Устойчивость 
к атакам (%) 

GNN 45 2,5 95 90 
AODV 55 2,9 85 70 

RPL 60 3,0 90 75 

Результаты тестирования модели (таблице 1) подтверждают снижение задержек и энер-
гопотребления, а также устойчивость модели к сбоям и атакам. 

Для количественной оценки комплексной эффективности рассчитан обобщенный показа-
тель L на основе данных таблицы 1 и нормировки, описанной в формуле (1).  

Для GNN: 

 90 0,90;
100

S     

 
45 5 0,5 1 0,5 1 0,50 0,55 0,5 0,95 0,75;

100 100
P                

   
  

 2,51 0,167;
3,0

E =     

 0,3 0,9 0,45 0,75 0,25 0,167 0,27 0,3375 0,04175 0,649L           .  
Для AODV:  

 
70 0,70;

100
S  

  

 
55 15 0,5 1 0,5 1 0,50 0, 45 0,5 0,85 0,65

100 100
P                

   
; 

 2,91 0,033;  
3,0

E =     

 0,3 0,7 + 0, 45 0,65 + 0, 25 0,033 0,21+ 0, 2925 + 0,0825 0,51075.L =        
Для RPL: 

 75 0,75;
100

S     

 60 20 0,5 1 0,5 1 0,50 0, 40 0,5 0,80 0,60
100 100

P                 
   

;  

3,01 0;
3,0

E     

  0,3 0,75 0, 45 0,6 0,25 0 0, 225 0, 27 0 0, 495.L             
Более высокое значение L для GNN (0,649 против 0,511 для AODV и 0,495 для RPL) ука-

зывает на лучшую комплексную эффективность, поскольку L интерпретируется как взве-
шенная сумма нормализованных показателей (выше – лучше, при максимизации баланса). 

Тестирование методов защиты микроконтроллеров проводилось в эмуляторе QEMU, 
имитирующем STM32 в среде IIoT. LSTM обнаруживает аномалии (например, попытки не-
санкционированного доступа) с точностью 95 % при задержке обработки 10 мс. Криптогра-
фический модуль обеспечивает защиту прошивок с энергопотреблением менее 0,5 Вт, что на 
20 % ниже аналогов на AES. 

Тестирование модели отслеживания объектов проведено на платформе Hyperledger Fabric 
с 100 RFID-метками. Точность отслеживания составила 90 %, энергопотребление – менее 
5 Вт (на 30 % ниже аналогов). Задержка записи в блокчейн – 50 мс, что приемлемо для ре-
ального времени. 
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Алгоритм комплексной оценки эффективности IIoT включает в себя сбор и нормализа-
цию показателей качества, вычисление эффективности и прогнозирование эффективности с 
точностью 90 %, что подтверждено тестированием в NS-3, обеспечивающим выбор опти-
мальных технологий для гетерогенных IIoT-систем. 

Алгоритм реализован с использованием машинного обучения (регрессия) для прогнози-
рования эффективности на синтетических данных [19-21]. 

Тестирование проведено на синтетических наборах данных (1000 сценариев). Точность 
прогноза эффективности составила 90 %, что на 5 % выше результатов, полученных с ис-
пользованием базовых методов (например, линейной регрессии и метода опорных векторов, 
SVM). Новизна такого подхода выражена в комплексной оценке, учитывающей три ключе-
вых показателя качества и адаптивность к гетерогенным IIoT-системам. 

Полученные результаты показывают, что протокол GNN располагается на границе, на 
которой ни один показатель системы не может быть улучшен без ухудшения какого-либо 
другого показателя, обеспечивая одновременно минимальные значения задержки и энерго-
потребления при сохранении высокого уровня устойчивости к атакам. Протоколы AODV и 
RPL характеризуются большими задержками и энергозатратами при более низкой устойчи-
вости [22-24]. 

Сравнение предложенного алгоритма с аналогами по точности, времени вычислений и 
применимости к гетерогенным сетям отражено в таблице 2, что подчеркивает преимущества 
комплексной оценки. 

Таблица 2  Таблица сравнения алгоритмов 
Table 2 – Metric Comparison Table 

Алгоритм Точность, % Время вычисления, мс Гетерогенность 
Предложенный 90 50 Да 

Линейная регрессия 85 60 Нет 

Предложенный алгоритм позволяет оптимизировать проектирование IIoT-систем, выби-
рая технологии с учётом баланса безопасности, энергопотребления и производительности. 

Разработана систематическая классификация протоколов и технологий IIoT, основанная 
на их оценке по трём ключевым показателям: безопасности, энергопотреблению и произво-
дительности. Классификация включает протоколы (MQTT, CoAP, RPL, AODV) и технологии 
(RFID, LoRaWAN, NB-IoT), которые были структурированы с использованием метода анали-
за иерархий (МАИ, Analytic Hierarchy Process, AHP). Применение МАИ позволило выпол-
нить ранжирование по следующим признакам: безопасность, оцениваемая устойчивостью к 
атакам (например, MITM, DDoS); энергопотребление, выраженное средним потреблением 
энергии на узел; производительность, определяемая задержками и пропускной способно-
стью. Данная классификация позволяет обоснованно выбирать оптимальные решения для 
гетерогенных IIoT-систем с учётом их специфических требований и условий эксплуатации. 

Составлена таблица, связывающая протоколы и технологии с метриками (таблица 3). 
Протокол CoAP показал высокую энергоэффективность (0,3 Вт), но низкую устойчивость к 
атакам, тогда как RPL лучше справляется с безопасностью, но имеет задержки до 60 мс. 
Классификация позволяет выбрать оптимальные технологии для конкретных сценариев IIoT. 

В таблице 3 приведено сравнение протоколов (MQTT, CoAP, RPL, AODV) по трём мет-
рикам. 

Таблица 3  Таблица сравнения протоколов 
Table 3 – Metric Comparison Table 

Протоколы Безопасность, % Энергопотребление, Вт Задержка, мс 
MQTT 80 0,5 30 
CoAP 70 0,3 25 
RPL 85 0,7 60 

AODV 75 0,2 100 
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Новизна такого подхода выражена в учёте гетерогенности IIoT в классификации и инте-
грации трёх метрик для комплексного анализа. 

Заключение 
В статье предложена методика разработки адаптивных математических моделей и алго-

ритмов для обеспечения киберфизической безопасности и оптимизации взаимодействия ин-
теллектуальных объектов в сетях промышленного Интернета вещей (IIoT), включающая мо-
дель управления сетевым трафиком на основе графовых нейронных сетей (GNN), методы 
кибербезопасности микроконтроллеров с применением машинного обучения (LSTM) и крип-
тографической защиты, а также модель интеграции RFID и блокчейна для высокоточного 
отслеживания объектов, при условии гетерогенности сетей и учета ключевых метрик произ-
водительности, безопасности и энергопотребления, подтвержденных тестированием в средах 
NS-3, QEMU и Hyperledger Fabric. 

Прикладное значение полученных результатов заключается в их использовании для про-
ектирования и оптимизации реальных IIoT-систем в отраслях промышленности (например, 
системы мониторинга), логистики (например, цепочки поставок и умные склады) и критиче-
ской инфраструктуры (например, автоматизация производства), где предлагаемые модели 
позволяют снизить риски киберугроз, минимизировать энергозатраты и повысить общую 
эффективность систем, способствуя цифровизации производства и повышению конкуренто-
способности предприятий. 
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The task of developing adaptive mathematical models and algorithms for ensuring cyber-physical secu-
rity and optimizing the interaction of intelligent objects in industrial Internet of Things (IIoT) networks is 
considered. The aim of the work is to create energy-efficient and fault-tolerant solutions for managing net-
work traffic, protecting microcontrollers, and tracking objects. An adaptive traffic control model based on 
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graph neural networks (GNN) has been developed, which reduces delays by 15-20% and power consumption 
by 10-15% compared to AODV and RPL protocols, and has been tested in NS-3 environment. Microcontrol-
ler cybersecurity methods have been proposed, including machine learning algorithm (LSTM) for anomaly 
detection with 95% accuracy and cryptographic protection of firmware, which have been tested on STM32 
platform in QEMU emulator. A model for integrating RFID and blockchain for object tracking with 99% 
accuracy and less than 5 W of power consumption has been developed and tested on Hyperledger Fabric. An 
algorithm for comprehensive assessment of IIoT performance has been created, combining security, power 
consumption, and performance metrics with 90% prediction accuracy. The impact of network heterogeneity, 
protocol parameters, and technologies on key performance and security metrics have been identified. The 
practical significance lies in the ability to select optimal technologies and improve the security and efficiency 
of IIoT systems. 

Key words: industrial Internet of Things (IIoT), adaptive mathematical models, cyber-physical security, 
graph neural networks (GNN), machine learning (LSTM), routing, energy efficiency, microcontroller cyber-
security, cryptography, RFID, blockchain, Hyperledger Fabric, comprehensive assessment, protocol classi-
fication, NS-3, STM32, QEMU. 
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