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Предложена модель комплексного применения способов проектирования технологических сетей 
радиосвязи стандарта LTE‑1800 TDD для зон пересечения двух и более систем, работающих в диа-
пазоне 1785–1805 МГц. Модель устраняет методический пробел, предоставляя универсальный поша-
говый алгоритм: сбор исходных данных, комплексный расчет ЭМС для кластера из восьми ближай-
ших базовых станций, частотно‑территориальное планирование, выбор способа (ширины полосы), 
расчет зон обслуживания и зон бесшовного перехода между базовыми станциями (хэндовер). Вы-
полнен сравнительный анализ четырех подходов (в т. ч. с шириной полосы 10 МГц); применены мо-
дель распространения COST‑231 (Хата) и точные формулы для прогнозирования покрытия, помех и 
зон перехвата. Внедрение модели позволило снизить риски и затраты, обеспечить непрерывность 
связи, пропускную способность и требуемую надежность на сложных участках; подтверждена 
практическая значимость. Представлен алгоритм выбора способа применения ширины полосы, 
обеспечивающий адаптацию к уровню помех и возможностям синхронизации. Целью работы явля-
ется доказательство работоспособности модели и обеспечение надежной и стабильной связи в ме-
стах пересечений. 
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Введение 
Технология LTE (Long Term Evolution) является наиболее перспективной для использо-

вания на железнодорожном транспорте. Для нужд железнодорожного транспорта был выде-
лен диапазон частот 1785-1805 МГц для организации технологической сети радиосвязи [1]. 

При создании высокоскоростных железнодорожных магистралей, работающих в техно-
логических сетях железнодорожной радиосвязи стандарта LTE-1800 TDD (TDD – Time Divi-
sion Duplex – временное разделение каналов) [1], могут возникать ситуации, когда две и/или 
более магистралей будут иметь места пересечений. В данных местах необходимо обеспечить 
уверенную радиосвязь, чтобы не допустить ошибок в обеспечении безопасности движения 
поездов и предотвратить отказы связи. 

На данный момент не существует универсального решения как проектировать данные 
места пересечений, поскольку эта ситуация является нетиповой, но тем не менее такие ситу-
ации будут возникать при дальнейшем проектировании высокоскоростных железнодорож-
ных магистралей. 

В связи с этим была разработана модель проектирования комплексного применения спо-
собов проектирования технологических сетей радиосвязи стандарта LTE-1800 TDD в местах 
пересечения с другими сетями связи, работающих в стандарте LTE-1800 TDD и на частоте 
1785-1805 МГц [2-4]. Модель включает в себя 4 способа проектирования, которые могут 
применяться в зависимости от технических условий. Ключевой особенностью каждого из 
способов является применение различной ширины полосы частоты, предусмотренной [1]. 
Так для способа № 1 характерно применения ширины полосы 10 МГц, для способа № 2 – 
5 МГц, для способов № 3 и № 4 – 3 МГц и 1,4 МГц соответственно. 
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Теоретическая часть 
Представленный на рисунке 1 алгоритм описывает создание модели для проектирования 

технологических сетей радиосвязи стандарта LTE-1800 TDD. 
Данная модель разработана на основе методики расчетов электромагнитной совместимо-

сти (ЭМС) и условий совместного использования радиоэлектронных средств (РЭС) с РЭС 
сухопутной подвижной службы [5]. В методике учтена расчетная модель, приведенная в Ре-
комендации Международного союза электросвязи (МСЭ-R) Р.1546. 

Рекомендация МСЭ-R Р.1546 представляет метод прогнозирования распространения ра-
диоволн для трасс связи для наземных служб в диапазоне частот от 30 МГц до 4000 МГц. 
Метод рекомендуется для использования в линиях радиосвязи в условиях тропосферы над 
сухопутными трассами, морскими трассами и/или смешанными трассами, состоящими из 
сухопутных и морских участков, длиной от 1 до 1000 км для эффективной высоты передаю-
щей антенны менее 3000 м [5]. 

Модель применима в месте пересечения двух смежных сетей технологической радиосвя-
зи. Обе системы работают в одном частотном диапазоне и имеют одинаковую ширину поло-
сы частоты 10 МГц. 

Модель обеспечивает возможность проведения необходимых расчетов с учетом условий 
распространения радиоволн и вариантов взаимодействия РЭС. 

Использование данного номинала частоты является одной из особенностей способа № 1. 
Всего предусмотрено 4 способа проектирования. 

Изначально необходимо оценить помеховую ситуацию ЭМС для всех базовых станций (БС), 
расположенных в месте пересечения, а также для 4-х ближайших к ним (всего 8 БС). 

Для оценки ЭМС рассчитываются: PП – максимальный уровень помехи на входе прием-
ника планируемой БС (БСП) от дополнительной БС (БСД); SП – уровень полезного сигнала на 
входе приемника БСП; PД – максимальный уровень помехи на входе приемника БСД от БСП; 
SД – уровень полезного сигнала на входе приемника БСД; S/PbegП – защитное отношение сиг-
нал-помеха для БСП или минимальная величина отношения полезного сигнала к мешающему 
на входе приемника, которая позволяет получить установленное качество приема полезного 
сигнала на выходе приемника, дБ [5]. 

Помеховая ситуация ЭМС рассчитывается по следующим формулам. 
А. Начало помехового воздействия: 
1) помеховая ситуация, когда рецептором помех является планируемая РЭС  

 П П
begП

SS P
P

  ; (1) 

2) помеховая ситуация, когда рецептором помех является дополнительная РЭС 

 Д Д
begД

SS P
P

  , (2) 

где S/PbegД – защитное отношение сигнал-помеха для БСД, или минимальная величина отно-
шения полезного сигнала к мешающему на входе приемника, которая позволяет получить 
установленное качество приема полезного сигнала на выходе приемника, дБ [5]. 

Б. Блокирование связи помехой: 
1) помеховая ситуация, когда рецептором помех является планируемая РЭС  

 П П
blockП

SS P
P

  , (3) 

где S/PblockП – блокирующее защитное отношение сигнал/помеха для БСП, при котором по-
меха существенно ухудшает качество, затрудняет или неоднократно прерывает работу служ-
бы радиосвязи, дБ [5]; 
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Рисунок 1  Схема алгоритма Модели 

Figure 1 – Model Algorithm Diagram 
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2) помеховая ситуация, когда рецептором помех является дополнительная РЭС 

 Д Д
blockД

SS P
P

  , (4) 

где S/PblockД – блокирующее защитное отношение сигнал/помеха для БСД, при котором суще-
ственно ухудшается качество, затрудняется или неоднократно прерывается работа службы 
радиосвязи, дБ [5]. 

Важно понимать, что при помеховых ситуациях возможны два варианта: когда рецепто-
ром помех является планируемая РЭС или абонентская станция планируемой РЭС, а также 
когда рецептором является дополнительная РЭС или абонентская станция дополнительной 
РЭС. Ниже представлены формулы для расчета уровня полезного сигнала на входе приемни-
ка обеих ситуаций. 

Расчет уровня полезного сигнала на входе приемника планируемой РЭС: 
 П П tr rП rt rП trП rП trS EIRPS G KU G A LosS Fade         , (5) 
где EIRPSП (Equivalent Isotropically Radiated Power) – эквивалентная изотропно-излучаемая 
мощность (ЭИИМ) полезного сигнала на выходе излучающей антенны БСП, дБВт; Gtr – 
ослабление сигнала передающей антенны в направлении получателя полезного сигнала по 
сравнению с максимумом излучения, дБ; KUrП – коэффициент усиления антенны приемника 
БСП, дБи; Grt – ослабление приемной антенны в направлении источника сигнала по сравне-
нию с максимумом усиления принимаемого сигнала, дБ; ArП – коэффициент ослабления сиг-
нала в антенно-фидерном тракте (АФТ) БСП, дБ; LosStrП – медианное ослабление сигнала в 
пространстве при распространении от источника сигнала БСП, дБ; FaderП – энергетический 
запас на замирание сигнала для БСП, дБ; γtr – уровень поляризационных потерь между пере-
датчиком и приемником, если и передатчик, и приемник имеют заданную поляризацию ан-
тенн, дБ [5]. 
 Д Д tr rД rt rД trД rД trS EIRPS G KU G A LosS Fade         , (6) 
где EIRPSД – ЭИИМ полезного сигнала на выходе излучающей антенны БСД,дБВт; KUrД – 
коэффициент усиления антенны приемника БСД, дБи; ArД – коэффициент ослабления сигнала 
в АФТ приемника БСД, дБ; LosStrД – медианное ослабление сигнала в пространстве при рас-
пространении от источника сигнала БСД, дБ; FaderД – энергетический запас на замирание 
сигнала для БСД, дБ [5]. 

Расчет уровня полезного сигнала на входе приемника дополнительной РЭС 
 П Д tr rП rt rП trП rП tr П АСP EIRPP G KU G A LosP Fade K            , (7) 

где EIRPPД – ЭИИМ источника помех на выходе излучающей антенны БСД, дБВт; LosPtrП – 
медианное ослабление помехи в пространстве при распространении от источника сигнала 
БСП, дБ; KПΣАС – поправочный коэффициент на групповую помеху по количеству помеховых 
источников для БСП (применяется в случае когда БС входит в сеть фиксированного беспро-
водного доступа), дБ; Δ – поправка уровня помехи по разносу полос частот (процесс коррек-
тировки уровня принимаемого сигнала для снижения помех от соседних каналов, которые 
возникают при близком расположении частот несущих) приемника и помехи, дБ [5]. 
 Д П tr rД rt rД trД rД tr Д АСP EIRPP G KU G A LosP Fade K            , (8) 

где EIRPPП – ЭИИМ источника помех на выходе излучающей антенны БСП, дБВт; LosPtrД – 
медианное ослабление помехи в пространстве при распространении от источника сигнала 
БСД, дБ ; KДΣАС – поправочный коэффициент на групповую помеху по количеству помехо-
вых РЭС для БСД (применяется в случае, когда БС входит в сеть фиксированного беспровод-
ного доступа), дБ [5]. 

Расчет поправок уровня помехи по разносу частот полезного сигнала и помехи выполня-
ется путем расчета интегральной помехи в полосе приема РЭС-рецептора помехи с учетом 
процента перекрытия амплитудно-частотной характеристики (АЧХ) и маски излучения не-
обходимой ширины полосы излучения (НШПИ) передатчика по формуле 
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 (9) 

где B−Nt – ширина спектра помехи с учетом маски спектра по уровню минус 60 дБ, минус 
50 дБ, минус 40 дБ и др., МГц; ft – центральная частота передачи РЭС-источника помех, 
МГц; BHr – НШПИ РЭС-рецептора помех, МГц; fr – центральная частота приема РЭС-
рецептора помех, МГц; P(ft, B−Nt) – АЧХ РЭС-рецептора помех в полосе излучения (НШПИ) 
РЭС-источника помехи; S(fr, BHr) – АЧХ РЭС-рецептора помех в полосе излучения (НШПИ) 
РЭС-приемника [5]. 

После того, как рассчитана помеховая ситуация ЭМС для 8 БС в месте пересечения двух 
цифровых систем технологической радиосвязи стандарта LTE-1800 TDD, необходимо рас-
считать дальность радиосвязи каждой БС в месте пересечения. 

При этом необходимо также рассчитать средние потери Lp на трассе. 
В зависимости от типа трассы применяются формулы (10) – (15) [7]: 
Для плотной городской застройки 

 Lp= 48,5 − 13,82 lg(hБС) + 35,41 lg(f) − [1,1lg(f) − 0,7)hМС + [44,9 − 6,55lg(hБС)]lg(r).  (10) 
Для среднего города 

 Lp= 45,5 − 13,82 lg(hБС) + 35,41 lg(f) − [1,1lg(f) − 0,7)hМС + [44,9 − 6,55lg(hБС)]lg(r). (11) 
Для сельской местности 

 Lp= 9,56 − 13,82 lg(hБС) + 53,73 lg(f) − [1,1lg(f) − 0,7)hМС − 4,78[lg(f)]2 + [44,9 – 
 − 6,55lg(hБС)]lg(r). (12) 

Для открытой местности 
 Lp=4,56 − 13,82 lg(hБС) + 53,73 lg(f) − [1,1lg(f) − 0,7)hМС − 4,78[lg(f)]2 + [44,9 –  
 − 6,55lg(hБС)]lg(r). (13) 

В общем виде данные выражения можно представить как: 
 Lp=A + B lg(r). (14) 

Таким образом, радиус зоны обслуживания БС r может быть выражен: 
 R=10(Lp − A)/B. (15) 

После расчета дальности радиосвязи всех восьми БС следует назначение одной частоты 
для каждой БС и установка минимальной требуемой скорости. 

Данную модель необходимо внедрить в процессы проектирования для оценки частотного 
радиопокрытия территории для участка между БС для обеспечения бесперебойной связи. 

Экспериментальные исследования 
Внедрение модели было направлено на устранение критического пробела в проектирова-

нии инфраструктуры высокоскоростного железнодорожного транспорта – отсутствия стан-
дартизированных решений для зон пересечения двух и более цифровых систем технологиче-
ской радиосвязи (ЦСТР), работающих в одном частотном диапазоне (1785-1805 МГц) и по 
одному стандарту (LTE-1800 TDD). Результаты внедрения подтвердили ее эффективность 
как универсального инструмента для обеспечения непрерывной и качественной связи в этих 
сложных условиях [6]. 

Внедрение модели позволило систематизировать ранее неформализованный процесс 
проектирования, что привело к следующим конкретным результатам. 

1. Универсальный алгоритм для нетиповых ситуаций. 



Вестник РГРТУ. 2025. № 94 / Vestnik of RSREU. 2025. No 94  41

Модель успешно решила главную задачу – предоставила структурированный, пошаговый 
алгоритм (см. рисунок 1) для анализа и проектирования зон пересечения, который ранее от-
сутствовал. Внедрение показало, что модель обладает следующими положительными каче-
ствами. 

1.1. Четко определяет последовательность действий:  
1) сбор исходных данных; 
2) расчет электромагнитной совместимости (ЭМС); 
3) частотно-территориальное планирование; 
4) выбор способа (ширины полосы); 
5) расчет зон обслуживания и хэндовер; 
6) финальная настройка. 
1.2. Интегрирует комплексный расчет электромагнитной совместимости не для двух 

станций, а для кластера из 8-ми ближайших БС, что критически важно для адекватной оцен-
ки помеховой обстановки. 

2. Сравнительный анализ и обоснованный выбор оптимального, с точки зрения радиопо-
крытия способа проектирования места пересечения сетей радиосвязи. 

Наиболее ценным результатом внедрения стала возможность проведения сравнительного 
анализа четырех принципиально разных подходов (способов №1-4, подразумевающих ис-
пользование модели для разной ширины полосы частоты), и выбор оптимального для кон-
кретных условий. 

В модели, в зависимости от применения той или иной ширины полосы частоты, могут 
использоваться 4 способа проектирования: 1-й способ подразумевает применение полосы 
10 МГц, 2-й способ подразумевает использование полосы 5 МГц, а 3-й и 4-й способы – 
3 МГц и 1,4 МГц соответственно. 

3. Повышение точности и обоснованности проектных решений 
Внедрение формализованного алгоритма расчета с использованием специализированных 

моделей распространения (COST-231 - Хата) и точных формул для расчета зон обслужива-
ния и хэндовер позволило [7] достичь следующего. 

3.1. Отказаться от эмпирики: заменить субъективные оценки инженеров на точные рас-
четы, основанные на параметрах оборудования и рельефа местности. 

3.2. Прогнозировать результат: с высокой точностью предсказывать зоны покрытия и по-
тенциальные проблемные точки до этапа физического развертывания оборудования, что 
подтвердилось при натурных испытаниях. 

4. Практическая ценность 
4.1. Снижение рисков: модель позволяет выявить и устранить проблемы ЭМС на этапе 

проектирования, а не дорогостоящей переделки после развертывания. Выбор оптимального 
способа предотвращает инвестиции в неработоспособные конфигурации. 

4.2. Гарантия соблюдения технического задания (ТЗ): внедрение гарантирует выполне-
ние ключевых технических требований: непрерывность связи, скорость передачи не менее 
2/1 Мбит/с и надежность на сложнейших участках инфраструктуры. 

4.3. Универсальность и адаптивность: модель не является жестким стандартом, а пред-
ставляет собой гибкий инструмент. Алгоритм выбора (см. рисунок 2) позволяет адаптиро-
вать решение под конкретные условия: уровень внешних помех, требуемую пропускную 
способность, возможность синхронизации БС. 

На рисунке 2 применяются следующие условные обозначения: 
ЗО – зона обслуживания БС – территория, на которую базовая станция способна 

передавать и принимать сигналы, образуя ячейку сотовой сети. Ее радиус зависит от 
нескольких факторов: поколение сети (GSM, LTE, 5G и др.), мощности БС и характера 
рельефа местности (открытая местность, город и др.). Чаще всего БС в условиях 
железнодорожного транспорта устанавливают на антенно-мачтовых сооружениях (АМС); 

DL (DownLink) – нисходящая линия передачи данных по каналу связи; 
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UL (UpLink) – восходящая линия передачи данных по каналу связи; 
TDD (Time Divison Duplex) – временное разделение каналов связи. Ключевой 

особенностью Решения ГКРЧ от 11.09.2018 №18-46-02 [1] является применение TDD, то есть 
необходимо сделать обоснованный выбор конфигурации распределения субкадров в 
радиокадре, которая по сути, определяет процент времени работы на прием и передачу; 

Хэндовер (Handover) – процесс передачи активного соединения между базовыми 
станциями в сотовых сетях, чтобы обеспечить бесперебойную связь при перемещении 
абонента по всему участку проектирования («бесшовный» переход между сотами). 

Были проведены эксперименты по изменениям зоны радиопокрытии базовых станций в 
местах пересечения сетей связи без использования модели комплексного проектирования  и 
с использованием модели комплексного проектирования. Эксперименты проводились для 
кластера, состоящего из 8 БС, т.е. 4 БС, непосредственно находящихся на пересечении двух 
сетей, а также из 4 ближайших к ним БС, которые имеют прямое воздействие на БС, нахо-
дящиеся в зоне пересечения. Стоит отметить, что эксперименты проводились на территории 
Московского железнодорожного узла (МЖУ).  

По результатам экспериментов было получено, что в эксперименте с использованием 
модели комплексного проектирования зона обслуживания базовых станций участка пересе-
чения полностью обеспечена уверенной радиосвязью на всем протяжении (100 %) в отличие 
от ситуации, когда в идентичных условиях не используется модель (зона покрытия участка 
пересечении составляет не более 10 %). 

При неполном покрытии территории возникают ситуации обрыва связи, которые недопу-
стимы при обеспечении безопасности движения поездов. 

Кроме того, к сетям технологической радиосвязи на железнодорожном транспорте 
предъявляются требования по обеспечению надежности. Согласно этим требованиям, коэф-
фициент надежности по месту и времени составляет 0,95 (95 %). 

По результатам компьютерного и математического моделирования, при использовании 
модели комплексного проектирования достигается обеспечение надежности радиосвязи на 
уровне 0,99 (99%). 

При математическом моделировании эффективность предлагаемого алгоритма Модели 
оценивалась по коэффициенту K надёжности: 
 K=MTTF/ (MTTF + MTTR), (16) 
где MTTF (Mean Time To Failure) – средняя наработка на отказ (среднее время работы 
устройства с начала его использования или с последнего ремонта до отказа), часы; MTTR 
(Mean Time To Repair) – среднее время ремонта, часы [8]. 

Согласно документации, разрабатываемой заводом-изготовителем, было получено, что 
для оборудования, используемого на железнодорожном транспорте в технологических сетях 
радиосвязи, среднее время наработки на отказ составляет 100000 часов, а среднее время ре-
монта составляет порядка 0,5 часа, то коэффициент надежности составляет 0,999995. 

Таким образом, коэффициент K надежности повышается на 4,9 %. 
Внедрение разработанной модели комплексного проектирования доказало ее высокую 

эффективность и практическую значимость. Модель не является теоретическим аппаратом – 
это действующий инструмент, который: 

1) ликвидирует пробел в методологии проектирования, предоставляя структурированный 
алгоритм для работы со сложными узлами пересечения; 

2) обеспечивает обоснованный выбор решения из четырех возможных вариантов проек-
тирования (способы № 1 – 4) в зависимости от конкретных условий проекта, минимизируя 
риски обрыва радиосвязи из-за неполного покрытия и оптимизируя затраты; 

3) повышает надежность и отказоустойчивость всей системы технологической связи на 
критически важных участках железнодорожной инфраструктуры. 
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Рисунок 2 – Алгоритм выбора способа применения ширины полосы 

в модели комплексного проектирования 
Figure 2 – Algorithm for Selecting Bandwidth Application Method 

in Integrated Design Model 
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Следует отметить существенное сокращение времени проектирования реальных техно-
логических сетей радиосвязи за счет использования предложенной модели комплексного 
применения способов проектирования. Так, усредненное время проектирования одного 
участка пересечения двух ЦСТР стандарта LTE-1800 TDD без использования предложенной 
модели составляло 72 часа (этап частотно-территориального планирования). При использо-
ванной модели как готового шаблона среднее время проектирования (этап частотно-
территориального планирования) было сокращено до 64 часов, т.е. в среднем на 8 часов (что 
равняется примерно 12 % от первоначального значения). 

Ведутся дальнейшие исследования по применению модели в условиях высокоскоростно-
го движения. 

Заключение 
Таким образом, результаты внедрения подтверждают, что модель достигает заявлен-

ной цели – обеспечения непрерывной и качественной связи в местах пересечения цифровых 
систем, работающих в стандарте LTE-1800 TDD. Внедрение разработанной модели ком-
плексного применения способов проектирования технологических сетей радиосвязи стан-
дарта LTE-1800 TDD в местах пересечения с другими сетями связи стандарта LTE-1800 TDD 
обеспечивает значительные улучшения по нескольким ключевым направлениям по сравне-
нию с эмпирическими или несистематизированными подходами. Среди них: сокращение 
времени разработки проектов в среднем на 12%; повышение надежности связи на 4,9 %; 
обеспечение зоны покрытия базовых станций в зависимости от начальных условий до 100 %. 
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