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Проведен сравнительный анализ двух методов двухканальной обработки изображений, основан-
ных на использовании представления Хургина – Яковлева и алгоритма в весовом пространстве Собо-
лева, использующие не только информацию о сигнале, но и о его производных. Целью работы явля-
ется выявление преимуществ и ограничений каждого метода при обработке и передаче изображе-
ний. Произведен расчёт характеристики синтезирующих фильтров. В результате эксперименталь-
ных исследований по восстановлению изображения для рассматриваемых методов осуществлена 
оценка качества восстановления изображений различных типов. Произведен анализ помехоустойчи-
вости рассмотренных алгоритмов к воздействию шумов квантования и аддитивных помех в канале 
связи. Показано, что метод обработки на основе весового пространства Соболева, использующий 
восстанавливающие фильтры с экспоненциальным затуханием, обладает значительно лучшей реа-
лизуемостью, хотя и несколько уступает в точности представлению Хургина – Яковлева с идеаль-
ными фильтрами. В результате экспериментальных исследований установлено, что оба метода 
обеспечивают существенное сокращение избыточности передаваемой информации без значитель-
ного ухудшения визуального качества. 
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Введение 
Современные задачи обработки и анализа изображений предъявляют высокие требова-

ния к эффективности и точности методов их обработки. Одними из ключевых проблем при 
разработке данных систем являются оптимальное сжатие и восстановление сигналов при 
ограниченном объеме передаваемых данных, что особенно актуально в таких областях, как 
обработка изображений, многоканальная передача данных и подавление шумов. Классиче-
ский подход, основанный на теореме В.А. Котельникова (известной так же, как теорема Най-
квиста – Шеннона), предполагает равномерную дискретизацию сигнала с частотой, превы-
шающей его удвоенную верхнюю частоту [1]. Согласно данной теореме для восстановления 
сигналов используется практически нереализуемый фильтр с импульсной характеристикой 
вида sin( ) /t t , а также в связи с вынужденным ограничением верхней частоты возникают 
искажения из-за «наложений» спектра. 

Все это послужило стимулом для развития методов с менее жесткими требованиями к 
практической реализации интерполирующих фильтров и к развитию алгоритмов спектраль-
ной обработки, имеющих низкую чувствительность к шумам в канале связи. Перспективным 
направлением является параллельная обработка, при которой по одному каналу передаются 
отсчёты самого сигнала, а по другим – отсчёты его производной. Такой подход позволяет 
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повысить информативность дискретного представления сигнала и улучшить качество его по-
следующего восстановления. 

В данной статье проводится сравнительный анализ двух современных математических ап-
паратов для двухканальной обработки изображений при использовании отсчетов сигнала и его 
первой производной. Первый метод основан на представлении Хургина – Яковлева [2], кото-
рое использует интерполяционную формулу Лагранжа для неравномерной последовательно-
сти отсчётов и позволяет синтезировать интерполирующие фильтры для восстановления как 
самого сигнала, так и его производной. Второй метод опирается на теорию весовых про-
странств Соболева, предоставляющую строгий функциональный анализ для обобщения теоре-
мы В.А. Котельникова и обоснования использования производных в процессе интерполяции. 

Целью работы являются теоретическое обоснование и экспериментальное сравнение 
эффективности этих двух подходов в задачах восстановления изображений. В рамках иссле-
дования проанализирована реализация синтезирующих фильтров, их амплитудно-частотные 
и фазочастотные характеристики, а также оцениваются такие ключевые показатели, как по-
мехоустойчивость и степень сжатия передаваемой информации. 

Обработка сигналов в двухканальной системе на основе представления  
Хургина-Яковлева с использованием интерполяционной формулы Лагранжа 

В соответствии с теоремой Котельникова отсчёты значений функции берутся через оди-

наковые интервалы длительности 1
2F

   с, но в некоторых случаях, например при много-

канальной передаче с временным разделением каналов и одновременном использовании ме-
тодов импульсной модуляции, возникает необходимость обобщения теоремы В.А. Котельни-
кова на случай отсчетов, следующих неравномерно друг за другом. На практике рассматри-
вают не произвольно расположенные моменты отсчётов, а распределенные некоторым регу-
лярным образом – группами по N точек, которые периодически повторяются [3]. Последова-
тельность моментов отсчета можно представить в следующем виде: 
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где s  – некоторое число точек в группе; s  – величина интервала между точками в группе. 
При фиксированном значении s  последовательность { }nst  имеет период NT N  . 

Базисная функция для каждой периодической последовательности { }nst  при 
фиксированном s  имеет следуюий вид: 
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Выражение (2) равно нулю при nsz t , при этом производная функции (2) не равна нулю, 
других нулей функция не имеет. Поэтому для множества задаваемого выражением (1), 
базисная функция может быть записана следующим образом: 
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Для отсчетов функции ( )f t  в моменты времени (1) интерполяционная формула Лагран-
жа имеет вид:  
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Важно отметить, что хотя интервалы между отсчетами не равные, за время N  берется 
также N отсчетов, и при ограничении спектра до интервала ( 2 ,2 )F F   выражение (4) будет 
представлять функцию ( )f t  единственным образом. 

При представлении последовательности отсчетов в виде (1) возникает идея о возможно-
сти использовать в качестве 1-го, 2-го и т.д. отсчетов отсчеты не самой функции, а отсчеты 
ее 1N  производных [4, 5, 6, 7]. Рассмотрим данную возможность при 2N  , то есть 

2 ,nt n   при этом в выражении (4) 0 12 , 2n nt n t n    ( 0, 1, 2...n    ). Если значение 
функции ( )f t  в точке 0 2nt n   известно, то при малом   ее значение равно 
 2

1( ) (2 ) (2 ) '(2 ) ( )nf t f n f n f n O           , (5) 
где 2( )O   – члены более высокого порядка малости. С учетом выражения (5) формула (4) 
примет вид: 
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При переходе к пределу при 0  и с использованием очевидных преобразований вы-
ражение (6) примет следующий вид: 
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Композиционную функцию такого ряда можно записать следующим образом: 
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В соответствии с выражением (8) импульсные переходные функции синтезирующих 
фильтров для двухканальной системы при передаче по первому каналу сигнала, а по второму 
его первой производной определяются выражениями: 
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Соответственно, (9) – импульсная характеристика синтезирующего фильтра сигнала, 
(10) – импульсная характеристика синтезирующего фильтра для первой производной. 
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Синтез синтезирующих фильтров для двухканальной системы обработки изображений 
на основе представления Хургина – Яковлева 

Приведенным выше импульсным характеристикам синтезирующих фильтров (9) и (10) 
соответствуют частотные характеристики: 
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В выражениях (11), (12) проведем замену 
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0,dt d t t    . С учетом замены, предложенных условий и в соответствии с теоремой о 
свертке из выражения (11) получим следующую запись для частотной характеристики: 
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Известно, что выражение sin jwa e d
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моугольного импульса, и, произведя свертку частотных характеристик двух прямоугольных 
импульсов, получим частотную характеристику треугольной функции: 

 
 0

2

0

1 2 , 2
( ) 2

0, 2 .

j te a a
H jw a

a

 
           
  

, (14) 

Проведем подстановку 
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 для выражения (14): 
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Для выражения (12), с учетом замены предложенных условий, получим следующее вы-
ражение: 
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С учетом выражения (14), после вычисления производной, формула (16) примет следу-
ющий вид: 
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при 2a   производная данной функции не существует. Проведем обратную подстановку 
для формулы (17): 
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Для получения амплитудно-частотной характеристики (АЧХ) и фазо-частотной характе-
ристики (ФЧХ) синтезирующих фильтров определим модуль и аргумент функций (15) и (18): 
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    

  
 

1

( ) 2 ,
2arg ( ) .

0,

sign n
H w

           
 

 (20) 

Для проведения экспериментальных исследований зададим 0n  , 1 / 2 грF  , где грF  – 
верхняя граничная частота синтезирующих фильтров, выбранная в соответствии стеоремой 
В.А. Котельникова. Выражения (19) и (20) могут быть преобразованы к следующему виду: 

 0

2 11 , 0 2
2 2( ) ,

0, 2

гр
гр гр

гр

F
F FH w

F

  
          

   

0arg ( ) 0,H w   

  2
2 , 0 2

21( ) ,
0, 2

гр

гр

гр

F
FH w

F

   
 

   

1

, 0 2
arg ( ) 2

0, 2 .

гр

гр

F
H w

F

    
   

 

Для практического применения в обработке изображений целесообразно перейти к без-
размерным нормированным частотным характеристикам, тогда получим [6,8]: 

 0

12 1 , 0 2
2( ) ,

0, 2

гр
гр

гр

F
FH w

F

  
          

   

0arg ( ) 0,H w   (21) 
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2 , 0 2

1( ) ,
0, 2

гр

гр

F
H w

F

    
   

1

, 0 2
arg ( ) 2

0, 2 .

гр

гр

F
H w

F

    
   

 (22) 

Для двумерного случая изображения ( , )f x y строгий подход требует использования век-

торного поля градиента ( , ) ,f ff x y
x y

  
     

. Однако при практической реализации использо-

вался упрощенный подход, который использует скалярное поле производных, определяемое 
в следующем виде: 

 ( , ) .d
f ff x y
x y
 

 
 

 (23) 

Выражение (23) эквивалентно вычислению производной по направлению вектора 
(1,1) :v 


 

 ( , ) ( , ) 1 1.d
f ff x y f x y v
x y
 

      
 


  

В частотной области оператор вычисления скалярного поля производных соответствует 
фильтру с передаточной функцией: 
 ( , ) ( ),dH u j u    (24) 
где ,u   – пространственные частоты. Данный фильтр выделяет компоненты градиента в 
направлении 45° в пространственно-частотной области [9, 10]. 

Восстановление изображения для представления Хургина-Яковлева осуществляется по 
формуле: 

 0 1
,

( , ) ( , ) ( , ) ( , ) ( , )x x x y d x y x y
m n

f x y f mT nT x mT y nT f mT nT x mT y nT          ,  

где ,x yT T  – интервалы дискретизации по горизонтальной (x) и вертикальной (y) осям соот-
ветственно, а синтезирующие функции определяются по формулам: 

 0
1( , ) sinc sinc 1 cot
x y x y x x

x y x xx y
T T T T T T

       
                

, 

 2 2
1

1( , ) sinc sinc
x y

x yx y
T T

  
           

. 

Эффективность скалярного подхода обусловлена следующими факторами: 
1. Сохранение контурной информации: для большинства естественных изображений гра-

диенты в направлениях 0°, 45°, 90° и 135° сильно коррелированы. Скалярное поле ( , )df x y со-
храняет существенную часть контурной информации. 

2. Энергетические соображения: спектр формулы (24) равномерно взвешивает горизон-
тальные и вертикальные частотные компоненты, обеспечивая сбалансированное представле-
ние градиентов. 

3. Упрощение реализации: использование одного канала производных вместо двух со-
кращает объем вычислений и упрощает архитектуру системы. 

Экспериментальные исследования показывают, что для широкого класса тестовых изоб-
ражений данный подход обеспечивает пиковое отношение сигнал-шум (англ. Peak signal-to-
noise ratio – PSNR), показывающее отношение между максимальным значением сигнала и 
мощностью шума, в диапазоне 26…30 дБ, что подтверждает его практическую эффектив-
ность [11, 12]. Качество восстановления изображений обусловлено тем, что скалярное поле 
производных адекватно представляет информацию о его высокочастотных компонентах, не-
обходимую для точной интерполяции. 
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Обработка сигналов в весовом пространстве Соболева 1
2W .  

Обобщение теоремы В.А. Котельникова на весовое пространство Соболева 1
2W  

Второй перспективный подход к двухканальной обработке сигналов основан на функци-
ональном анализе и использует аппарат весовых пространств Соболева. В то время как клас-
сическая теорема В.А. Котельникова формулируется для пространства 2L  функций с конеч-
ной энергией, данный подход позволяет строго математически обосновать целесообразность 
использования производной, введя дополнительное ограничение на «гладкость» сигнала, что 
отражает свойства многих реальных сигналов и изображений, которые не только имеют 
ограниченный спектр, но и являются достаточно гладкими. 1

2W . Пространство Соболева 1
2W  

задается нормой [13]: 

 

1
2 2

2 ( )( ) .W
T T

df tf f t dt dt
dt

 
  
  
    

То есть на класс функций в пространстве 1
2W , кроме условия  2f t dt





  , наклады-

вается дополнительное условие: 

 
2( )df t dt

dt





    
  .  

Пусть функция ( )f t  удовлетворяет условиям Дирихле (конечное число максимумов, ми-
нимумов и точек разрыва на любом конечном отрезке и абсолютно интегрируема на всей 
числовой оси), тогда она может быть представлена в виде интеграла Фурье (25): 

 ( ) ( ) exp( )f t S w jwt dw




  , (25) 

где её спектр ( )S w  принадлежит весовому пространству 1
2W , а его выражение имеет следу-

ющий вид: 

 2

1 ( )( ) [(1 ) ( ) ]exp( ) ,
2 ((1 ) )

df tS w f t j w jwt dt
w dt





    
      

где   – весовой коэффициент, который может изменяться от 0 до 1 и определяет баланс 
между вкладом энергии исходного сигнала и энергии его производной в процесс восстанов-
ления. Физически это означает, что при большем   алгоритм «доверяет» более гладким 
(медленно меняющимся) решениям, эффективно подавляя высокочастотные шумы. При 

0  данный метод вырождается в классический случай, не учитывающий гладкость. 
Вместе с тем спектр ( )S w  может быть представлен в виде ряда Фурье в пространстве 1

2W . 
В комплексной форме и в пределах интервала существования спектра max max2 2F w F      
этот ряд записывается в виде: 

 

max

max

max

max

2

2
2

2

2
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'
2 2

1( ) ( )exp( ) exp( )
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( )exp( ) exp( )
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1 exp( ) exp(
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F
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n n

S w S w jwn t dw jwn t
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jwf jwn t f jwn t
w w



  



  

 

 

 
     

   
 

     
   
 

     
 

 

 

  ),

 (26) 

где max1t F  . 
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Применяя преобразование Фурье к обеим частям равенства (26) и изменяя порядок инте-
грирования и суммирования, восстановленную функцию ( )вf t  можно представить в следу-
ющем виде [14]:  

 

max

max

max

max

2

2
2

2
'

2
2

1( ) exp( ( ))
1

exp( ( )) .
1

F

в n
n F

F

n
n F

f t f jw t n t dw
w

jwf jw t n t dw
w



  



  


   

 


  

 

 

 
 (27) 

В случае, когда параметр 0  , выражение (27) переходит в известное [15] соотношение 
для восстановления функций в пространстве 2L . Анализ формулы (27) показывает, что для 
восстановления функции ( )f t  отсчёты nf  и '

nf  должны быть обработаны интерполирующи-

ми фильтрами с передаточными характеристиками    2( ) 1 1cK w w    и 

 2( ) 1прK w jw w   . Передаточные характеристики этих фильтров обладают моно-
тонно убывающим характером, что выгодно отличает их от идеального фильтра нижних ча-
стот, используемого в классической теореме В.А. Котельникова, и существенно упрощает их 
практическую реализацию. 

Импульсные характеристики данных фильтров, в предельном случае при maxF  , соот-
ветственно равны [16]: 

 1 1( ) exp( )ck t t  
 


, (28) 

 1( ) ( ) exp( )прk t sign t t
   


.   (29) 

Подставляя (27) и (28) в (26), при 0 1    получаем [17]: 

 '1 1( ) ( ) exp( )в n n
n

f t f sign t n t f t n t




  
          
 ,  (30) 

где t  – интервал дискретизации. Оптимальное значение весового коэффициента   может 
быть выбрано на основе компромисса между точностью восстановления и устойчивостью к 
помехам, то есть предлагаемый алгоритм предоставляет механизм адаптации к характери-
стикам конкретного сигнала. Выражение (30) есть обобщение теоремы В.А. Котельникова на 
пространство 1

2W . Из формулы (30) следует, что предложенный алгоритм восстановления 
функции ( )f t  допускает распараллеливание операций обработки в каналах сигнала и его 
производной. При этом использование отсчётов производной не увеличивает общий объём 
передаваемой информации, поскольку позволяет вдвое снизить частоту дискретизации без 
потери точности восстановления [2]. 

Реализация метода интерполяции на основе обобщенной теоремы В.А.Котельникова  
в весовом пространстве Соболева 

Для обработки изображений в весовом пространстве Соболева применен подход, анало-
гичный подходу [17], описанному ранее для Хургина – Яковлева, который описывает ска-
лярное поле производных. Основное отличие заключается в использовании синтезирующих 
фильтров, адаптированных к норме весового пространства Соболева [18]. 

Обработка начинается с подготовки исходного изображения, которое преобразуется в 
черно-белое представление и нормализуется. Для обеспечения корректности последующей 
децимации применяется предварительная антиалиасинг-фильтрация с использованием филь-
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тра Гаусса, что позволяет подавить высокочастотные компоненты, способные вызвать нало-
жения спектра при уменьшении разрешения [19, 20]. 

На следующем этапе формируется скалярное поле производных изображения. Для этого 
в частотной области строится фильтр, вычисляющий сумму частных производных по про-
странственным координатам. Данный подход, аналогичный использованному в методе Хур-
гина – Яковлева, позволяет работать с единым скалярным представлением градиента, что 
упрощает вычислительную схему без существенной потери информативности. 

После подготовки исходных данных выполняется децимация как самого изображения, 
так и вычисленного поля производных. Коэффициент децимации равен двум по каждому из 
измерений, что соответствует четырехкратному уменьшению объема передаваемых данных. 
Важно отметить, что децимация применяется после антиалиасинг-фильтрации, что обеспе-
чивает выполнение условий обобщенной теоремы В.А. Котельникова. 

Ключевым этапом метода является восстановление изображения с использованием син-
тезирующих фильтров, адаптированных для весового пространства Соболева. Частотные ха-
рактеристики этих фильтров определяются через параметр  , задающий баланс между вкла-
дом энергии исходного сигнала и энергии его производной в процесс восстановления. АЧХ 
фильтра для восстановления яркости имеет плавно спадающий характер, в то время как 
фильтр для восстановления производной обладает характеристикой, обеспечивающей выде-
ление высокочастотных компонент. 

Процесс восстановления осуществляется путем фильтрации децимированных данных в 
частотной области с последующим обратным преобразованием Фурье. Для интерполяции 
изображения до исходного разрешения применяется процедура, аналогичная используемой в 
алгоритме Хургина – Яковлева, но с синтезирующими функциями, соответствующими весо-
вому пространству Соболева. Финальное изображение формируется как сумма восстанов-
ленных компонент яркости и производной с последующей нормализацией. 

Особенностью предложенного подхода является возможность регулировки весового ко-
эффициента  , что позволяет адаптировать алгоритм к характеристикам конкретного изоб-
ражения и требованиям к точности восстановления. Экспериментально установлено, что оп-
тимальное значение параметра   находится вблизи 0,5; что обеспечивает компромисс между 
точностью восстановления и устойчивостью к помехам. Но также стоит учитывать характер 
обрабатываемых изображений, для разных типов изображений   может существенно изме-
няться, поэтому в некоторых случаях необходимо сделать алгоритм адаптивным по данному 
параметру. 

Сравнение алгоритмов обработки изображений в весовом пространстве Соболева  
и с использованием представления Хургина – Яковлева 

Результаты экспериментальных исследований, продемонстрированные на рисунке 1, по-
казывают значительные различия в эффективности рассматриваемых алгоритмов: 1 – весо-
вое пространство Соболева 0,5  , 2 – весовое пространство Соболева 0,3  , 3 –
представление Хургина – Яковлева. Метод на основе представления Хургина – Яковлева 
обеспечивает качество восстановления на уровне 26…28 дБ PSNR для стандартных тестовых 
изображений. Такой результат обусловлен использованием синтезирующих фильтров с рез-
кими частотными характеристиками, что обеспечивает точное восстановление в идеальных 
условиях, но снижает устойчивость к реальным искажениям. 

В отличие от этого алгоритм в весовом пространстве Соболева демонстрирует более вы-
сокие показатели эффективности – 30…34 дБ PSNR. Улучшение на 4…6 дБ достигается за 
счет адаптивных характеристик синтезирующих фильтров, регулируемых параметром  . 
Оптимальное значение 0,5   обеспечивает баланс между учетом информации о яркости и 
производных, что особенно эффективно для изображений с выраженной текстурной состав-
ляющей. 
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Анализ помехоустойчивости выявил принципиальные различия в поведении алгоритмов 
при наличии шумовых воздействий. Представление Хургина-Яковлева проявляет повышен-
ную чувствительность к аддитивному гауссовскому шуму – при отношении сигнал-шум 
20 дБ на входе качество восстановления снижается на 8…10 дБ. Данный эффект объясняется 
резкими частотными срезами треугольной и прямоугольной характеристик фильтров, кото-
рые усиливают высокочастотные шумовые компоненты. 

 
Рисунок 1 – График PSNR в зависимости от числа отсчётов 

Figure 1 – PSNR graph depending on the number of samples 

Алгоритм обработки в пространстве Соболева демонстрирует существенно лучшую по-
мехоустойчивость. При тех же условиях воздействия шума (20 дБ на входе) деградация каче-
ства восстановления не превышает 3…4 дБ. Плавные частотные характеристики фильтров с 
экспоненциальным затуханием обеспечивают естественное подавление высокочастотных 
шумовых составляющих. При этом параметр   позволяет адаптировать степень сглажива-
ния: уменьшение   до 0,3 дополнительно повышает помехоустойчивость на 2…3 дБ ценой 
незначительного снижения четкости контуров. 

Метод на основе представления Хургина – Яковлева наиболее эффективен в задачах, 
требующих максимального сохранения деталей изображения в условиях минимального 
уровня шумов. К таким областям относятся научная визуализация, обработка медицинских 
изображений высокого разрешения, а также системы сжатия с потерями, где допустимо при-
менение дополнительных алгоритмов шумоподавления. 

Алгоритм обработки изображений в весовом пространстве Соболева демонстрирует пре-
восходство в практических приложениях, характеризующихся наличием шумов и необходи-
мостью обработки в реальном времени. Наибольшая эффективность достигается в системах 
видеонаблюдения, мобильной фотографии, веб-приложениях и других сферах, где требуется 
баланс между качеством восстановления и вычислительной эффективностью. Возможность 
адаптивной настройки параметра   делает данный метод особенно ценным для обработки 
разнородных изображений в автоматическом режиме. 

Заключение 
В ходе проведенного исследования выполнено комплексное сравнение двух методов 

двухканальной обработки изображений: представления Хургина – Яковлева и алгоритма в 
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весовом пространстве Соболева. Экспериментально установлено, что оба метода позволяют 
снизить частоту дискретизации в 2 раза по каждому измерению без существенной потери 
информативности, однако демонстрируют различные характеристики на практике. 

Алгоритм на основе весового пространства Соболева показал наилучшие результаты с 
PSNR 30…34 дБ, обеспечивая лучшую помехоустойчивость и практическую реализуемость 
за счет плавных частотных характеристик фильтров и адаптивного параметра  . В то время 
как представление Хургина-Яковлева (PSNR 26…28 дБ) сохраняет преимущество для задач, 
требующих минимальной погрешности в идеальных условиях. Полученные результаты 
определяют целесообразность применения каждого метода в зависимости от конкретных 
требований к качеству восстановления и уровню шумов. 
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