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Статья посвящена актуальной проблеме подавления шумов в изображениях, полученных с по-
мощью радаров с синтезированной апертурой (РСА). Основное внимание уделяется эффективному 
подавлению спекл-шума, характерного для данных РСА, при сохранении важных деталей изображе-
ния, таких как границы объектов и текстурные особенности. Предлагается новый метод фильтра-
ции, основанный на использовании пространственно-ориентированных деревьев (ПОД) вейвлет-
преобразования. Метод предполагает использование рекуррентной нейронной сети с архитектурой 
долгой краткосрочной памяти, применяемой к последовательностям коэффициентов, извлекаемым 
из ПОД-структуры, для более точного моделирования зависимостей между уровнями разложения и 
повышения качества восстановления зашумленного изображения. Экспериментальные исследования, 
проведенные на синтезированных зашумленных РСА-изображениях, демонстрируют превосходство 
предложенного подхода по сравнению с традиционными методами фильтрации по объективным и 
субъективным метрикам. 
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Введение 
Радары с синтезированной апертурой (РСА) являются одними из наиболее эффективных 

средств дистанционного зондирования Земли, обеспечивая получение изображений поверх-
ности с высоким разрешением независимо от погодных условий и уровня освещенности 
[1, 2]. Способность РСА преодолевать облачные покровы и осадки обусловливает их ключе-
вую роль в различных областях, таких как экологический мониторинг, картографирование, 
сельское хозяйство и управление последствиями стихийных бедствий. Однако качество 
изображений, формируемых с использованием РСА, зачастую снижается из-за присутствия 
специфического шума, известного как спекл-шум. Данный тип шума обусловлен интерфе-
ренцией когерентных электромагнитных волн, отражённых от поверхности, и характеризует-
ся мультипликативной моделью воздействия на сигнал [3, 4]. Этот шум не только снижает 
визуальную четкость, но и затрудняет автоматизированную обработку данных, такую как 
сегментация или классификация объектов. Таким образом, одной из основных задач обра-
ботки изображений, полученных с использованием РСА, является разработка эффективных 
методов повышения качества изображений, направленных на снижение спекл-шума без по-
тери значимых информационных деталей. Традиционные методы подавления спекл-шума, 
включая пространственные фильтры (например, медианный фильтр, фильтры Ли, Фроста, 
Куана и др.), а также методы с использованием специфических статистик, не обеспечивают 
идеального компромисса между степенью подавления шума и сохранением четкости изоб-
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ражения [5]. В последние годы значительное внимание уделяется методам фильтрации и вос-
становления изображений, основанным на вейвлет-преобразовании. Данный подход позво-
ляет эффективно анализировать и обрабатывать изображения на различных масштабных 
уровнях. Однако традиционные вейвлет-методы часто игнорируют пространственную корре-
ляцию пикселей на разных уровнях разложения, что приводит к появлению артефактов, раз-
мыванию границ и потере структурных особенностей, критически важных для интерпрета-
ции данных. Для преодоления этих ограничений перспективным направлением становится 
интеграция вейвлет-анализа с пространственно-ориентированными деревьями 
(ПОД) – структурами данных, которые организуют коэффициенты вейвлет-преобразования с 
учетом их геометрической особенности и направленной взаимосвязи. Такие деревья позво-
ляют выделять контуры и однородные области, моделируя иерархические зависимости меж-
ду вейвлет-коэффициентами в разных масштабах. Это открывает возможности для эффек-
тивного подавления шума при одновременном усилении значимых сегментов изображения, 
что особенно актуально для РСА-изображений, характеризующихся сложной текстурой и 
низким контрастом. 

Целью работы является разработка метода фильтрация зашумленных изображений, по-
лученных с помощью радаров с синтезированной апертурой, на основе обработки ПОД 
вейвлет-преобразования рекуррентной нейронной сетью с архитектурой долгой краткосроч-
ной памяти. 

Постановка задачи 
Вейвлет-преобразование представляет собой мощный математический инструмент, 

предназначенный для анализа сигналов или изображений в различных частотных диапазо-
нах, обеспечивая при этом их локализацию как во временной, так и в пространственной об-
ласти. Этот метод позволяет декомпозировать изображение на субполосах, соответствующих 
разным уровням детализации, что делает его особенно эффективным для задач обработки и 
восстановления изображений. Для выполнения вейвлет-декомпозиции исходных изображе-
ний могут использоваться различные типы вейвлет-преобразований. Однако для минимиза-
ции вычислительной сложности и обеспечения высокой эффективности обработки наиболее 
рациональным является применение быстрого вейвлет-преобразования (БВП), широко из-
вестного как схема Малла. Алгоритм БВП позволяет существенно сократить время вычисле-
ний за счёт иерархической организации операций разложения сигнала по ортогональным 
вейвлет-базисам. В процессе БВП осуществляется декомпозиция исходного изображения на 
несколько уровней детализации, каждый из которых включает вейвлет-коэффициенты, соот-
ветствующие различным ориентациям: горизонтальной, вертикальной и диагональной [6, 7]. 

Пространственно-ориентированные деревья (ПОД) вейвлет-коэффициентов – это струк-
туры данных, организующие коэффициенты вейвлет-преобразования с учётом их простран-
ственного расположения в исходном изображении. Они сочетают иерархическую частотную 
декомпозицию с геометрической локализацией, что делает их эффективными для обработки 
и анализа многомерных данных. Ключевая идея построения ПОД заключается в том, что 
вейвлет-коэффициенты, соответствующие одному и тому же пространственному местополо-
жению на различных уровнях декомпозиции, имеют статистическую взаимосвязь. Другими 
словами, если какой-то элемент изображения имеет заметный признак (например, край, кон-
тур), его вейвлет-коэффициенты, соответствующие этому местоположению, будут значи-
тельными на нескольких уровнях. Данное свойство позволяет учитывать корреляционные 
зависимости между масштабами при анализе и фильтрации изображений, что способствует 
более эффективному подавлению шума и сохранению информативных деталей. Структура 
ПОД для трехуровневого БВП представлена на рисунке 1. Все вейвлет-коэффициенты упо-
рядочиваются в виде иерархической древовидной структуры, в которой корень дерева (точ-
ка 1) соответствует коэффициенту аппроксимации (A3), находящемуся на самом последнем 
уровне декомпозиции. Каждый узел, представляющий собой вейвлет-коэффициент на  
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уровне j, имеет потомков на уровне j-1. Обычно каждый родительский узел имеет четырех 
потомков, которые соответствуют четырем коэффициентам следующего уровня. Эти потом-
ки пространственно отображают область, охватываемую родительским узлом, формируя та-
ким образом иерархическую структуру. Точки последнего уровня, или листья, в данной дре-
вовидной структуре не имеют потомков [8, 9]. 

 

Рисунок 1 – Структура ПОД для трехуровневого БВП 
Figure 1 – SOT structure for three-level FWT  

Неискажённые (чистые) изображения могут быть описаны как совокупность кусочно-
регулярных структур, для которых характерна локальная однородность – то есть плавное из-
менение значений интенсивности пикселей в пределах однородных текстурных или геомет-
рических регионов. При вейвлет-декомпозиции таких изображений коэффициенты, органи-
зованные в рамках ПОД, демонстрируют упорядоченное и монотонное убывание амплитуд 
по уровням декомпозиции: значимые коэффициенты сосредоточены вблизи особенностей 
(границ, углов), а в однородных областях они стремятся к нулю плавно, без резких скачков. 
При добавлении шума кусочно-регулярная структура сигнала нарушается – в однородных 
областях появляются ложные высокочастотные компоненты, что приводит к хаотичному 
распределению и аномальному повышению амплитуд вейвлет-коэффициентов в узлах ПОД, 
нарушая естественный характер их затухания. Следовательно, задача фильтрации шума в 
вейвлет-области сводится к восстановлению исходного, гладкого и структурированного ха-
рактера распределения вейвлет-коэффициентов по уровням и ветвям ПОД, что позволяет от-
делить информативные особенности изображения от шумовой компоненты и тем самым вос-
становить его кусочно-регулярную структуру. 

Теоретическая часть  
Нейронные сети (neural network, NN) успешно применяются для шумоподавления изоб-

ражений, обеспечивая высокое качество восстановления. Обученная сеть принимает на вход 
зашумлённое изображение и преобразует его в почти неискаженное изображение, миними-
зируя влияние шума. Это достигается за счёт обучения на парах «зашумлённое - неискажен-
ное» изображения, при котором сеть учится распознавать и подавлять шумовые компоненты, 
сохраняя важные визуальные детали. Нейронные сети реализуются с различными архитекту-
рами. Существует множество типов нейронных сетей, каждая из которых разработана для 
решения конкретных типов задач.  

В обработке изображений широко используются сверточные нейронные сети 
(convolutional neural network, CNN). Современные методы шумоподавления изображений, 
использующие CNN, демонстрируют значительную эффективность. Однако, как правило, 
они применяются непосредственно в пространственной области или ограничиваются фикси-
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рованными уровнями вейвлет-декомпозиции, что может приводить к неоптимальному ис-
пользованию корреляционных зависимостей вейвлет-коэффициентов на разных масштабах 
(уровнях) и, как следствие, к необходимости обучения на больших объемах данных.  

Рекуррентные нейронные сети (recurrent neural network, RNN) предназначены для обра-
ботки последовательностей данных, где информация может передаваться от одного шага к 
другому. Однако классические RNN склонны к проблемам исчезающего/взрывающегося 
градиента, что затрудняет обучение долгосрочных зависимостей. Архитектура долгой крат-
косрочной памяти (long short-term memory, LSTM) была разработана для преодоления этих 
ограничений благодаря наличию шлюзов (gates), которые контролируют поток информации 
через ячейку памяти. 

 

Рисунок 2 – Архитектура долгой краткосрочной памяти 
Figure 2 – Long short-term memory architecture  

На рисунке 2 представляется архитектура LSTM, включающая три ключевых шлюза: 
шлюз забывания, входной шлюз и выходной шлюз, которые управляют потоком информации 
внутри ячейки. Шлюз забывания, реализованный через сигмовидную функцию σ, определя-
ет, какую часть предыдущего состояния памяти t-1С  следует сохранить или забыть, умножая 
его на значение tf . Входной шлюз состоит из двух частей: блока с сигмовидной функцией, 
которая решает, какие новые данные добавить в память, и блока с функцией гиперболиче-
ского тангенса tanh, который создаёт кандидата для обновления состояния памяти. Новое со-
стояние памяти tС  формируется как сумма произведения старого состояния на коэффициент 
забывания и нового кандидата, умноженного на индикатор входа. Выходной шлюз, также 
использующий сигмовидную функцию, определяет, какую часть обновлённого состояния 
памяти передать на выход, умножая его на tO , после чего применяется функция tanh для 
нормализации. Результатом является новое скрытое состояние th , которое передаётся сле-
дующей ячейке, а также обновлённое состояние памяти tС , сохраняемое внутри ячейки. Эта 
архитектура позволяет LSTM эффективно управлять информацией, сохраняя важные данные 
на длительные временные интервалы и преодолевая проблему исчезающего градиента, ха-
рактерную для обычных RNN.  

Предлагаемый метод обработки ПОД с помощью RNN на LSTM  
В данной работе предлагается новый подход к шумоподавлению изображений, основан-

ный на применении рекуррентной нейронной сети с архитектурой LSTM (RNN-LSTM) для 
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обработки ПОД вейвлет-коэффициентов зашумленного изображения. Предлагаемый метод 
позволяет эффективно учитывать связи между вейвлет-коэффициентами разных масштабов 
через ПОД для предсказания «очищенного» значения каждого вейвлет-коэффициента и вос-
становления изображений с минимальной потерей деталей. 

В контексте обработки вейвлет-коэффициентов зашумленного изображения структура 
ПОД, представленная в виде упорядоченной последовательности, может служить входным 
сигналом для RNN-LSTM, что позволяет модели учить зависимости между родительскими и 
дочерними коэффициентами, а также принимать решения о значимости каждого коэффици-
ента в условиях действия шума. 

Предлагаемый метод реализуется по следующему алгоритму: 
1. Формирование ПОД. 
К зашумлённым изображениям применяется дискретное двумерное вейвлет-

преобразование, в результате которого формируются субполосы вейвлет-коэффициентов в 
разных направлениях (горизонтальном, вертикальном, диагональном) и  на разных уровнях 
разложения. Для каждого направления отдельно формируются векторы ПОД (простран-
ственно-ориентированных деревьев), отражающие локальные структуры и зависимости в со-
ответствующей субполосе. 

2. Разработка архитектуры трёхканальной RNN-LSTM. 
Разрабатывается параллельная трехканальная архитектура, в которой каждый канал (го-

ризонтальный, вертикальный, диагональный) содержит собственную RNN-LSTM сеть, 
настроенную на обработку ПОД своего направления. 

Входной слой каждого канала принимает последовательность вейвлет-коэффициентов, 
извлечённых из ПОД соответствующего направления. Скрытые LSTM-слои в каждом канале 
обрабатывают входную последовательность с учётом пространственной зависимости и кон-
текста предыдущих коэффициентов в своём направлении. Выходной слой каждого канала 
генерирует оценки вейвлет-коэффициентов для соответствующего направления. В качестве 
функции активации выходного слоя используется линейная функция активации. 

3. Обучение трёхканальной сети. 
Формируется обучающий набор данных: пары «неискаженное изображение – зашумлён-

ное изображение». Для каждой пары выполняется вейвлет-преобразование, и отдельно для 
каждого направления (H, V, D) формируются соответствующие ПОД. 

Трёхканальная RNN-LSTM обучается параллельно: каждый канал получает на вход за-
шумлённые коэффициенты своего направления и обучается предсказывать (вычислять) соот-
ветствующие оценки вейвлет-коэффициентов. 

В качестве функции потерь используется среднеквадратичная ошибка (MSE) между 
предсказанными и истинными коэффициентами в каждом канале. Общая функция потерь 
рассчитывается как среднее арифметическое по трём каналам. 

Оптимизация весов сети осуществляется с помощью алгоритма Adam, направленного на 
минимизацию общей функции потерь по всем трём каналам. 

4. Шумоподавление с использованием обученной трехканальной RNN-LSTM. 
‒  К зашумлённому изображению применяется дискретное двумерное вейвлет-

преобразование. Для каждого направления независимо формируются ПОД. 
‒  Сформированные ПОД подаются на вход соответствующих каналов обученной трех-

канальной RNN-LSTM. 
‒  Каждый канал сети генерирует оценки восстановленных вейвлет-коэффициентов для 

своего направления. 
5. Выполнить обратное преобразование полученного множества ПОД в массив вейвлет-

коэффициентов. 
6. Выполнить обратное вейвлет-преобразование нового массива вейвлет-коэффициентов, 

получив оценку неискаженного изображения. 
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Экспериментальная часть 
Эффективность методов оценивается с помощью программного обеспечения Python. В 

качестве тестовых изображений используются базы данных TAMPERE17 [10], включающие 
стандартные изображения в градациях серого размером 512×512 пикселей с разрешением 
8 битов на пиксель. Модель зашумленных изображений сформирована при помощи встроен-
ной функции, доступной в среде Python, где уровень шума задавался путем изменения дис-
персии в диапазоне от 0,01 до 0,08. В качестве метрик оценки эффективности использова-
лись среднеквадратичная ошибка (СКО), пиковое отношение сигнал-шум (ПОСШ) и индекс 
структурного сходства (SSIM). 

В таблице 1 представлены сравнительные результаты оценки эффективности шумопо-
давления по метрикам СКО, ПОСШ и SSIM классической вейвлет-фильтрации с применени-
ем пороговой обработки, медианного фильтра, фильтра Ли и предложенного метода вейвлет-
обработки ПОД с помощью RNN-LSTM (SOT-LSTM). Для визуализации результатов стати-
стической обработки данных метрики ПОСШ и SSIM представлены в виде графических за-
висимостей на рисунке 3 и рисунке 4 соответственно. На рисунке 5 показаны эксперимен-
тальные результаты обработки одного из тестовых изображений с дисперсией шума 0,05. Ри-
сунок 5, а демонстрирует исходное изображение без шума, а рисунок 5, б – искаженное 
изображение. Рисунки 5, в, г, д, е отображают результаты шумоподавления, полученные с 
использованием медианного фильтра, фильтра Ли, метода вейвлет-фильтрации с применени-
ем пороговой обработки и предложенного метода (SOT-LSTM) соответственно. 

Таблица 1 – Результаты экспериментов 
Table 1 – Experimental results 

Дисперсия 
шума 

Зашумлённое 
изображение 

Восстановленное изображение 
Медианный 

фильтр Фильтр Ли Вейвлет-
фильтрации SOT-LSTM 

CKO (.10-3) 
0,01 3,63 1,65 1,81 1,77 1,85 
0,02 6,91 2,90 2,95 2,49 2,10 
0,03 10,01 4,07 4,00 3,20 2,38 
0,04 12,84 5,13 4,88 3,84 2,68 
0,05 15,63 6,17 5,80 4,49 2,97 
0,06 18,30 7,16 6,46 5,12 3,27 
0,07 20,97 8,15 7,13 5,68 3,64 
0,08 23,65 9,16 7,68 6,32 3,97 

ПОСШ 
0,01 24,40 27,83 27,41 27,52 27,33 
0,02 21,61 25,38 25,30 26,04 26,78 
0,03 19,99 23,90 23,98 24,95 26,23 
0,04 18,91 22,90 23,12 24,16 25,73 
0,05 18,06 22,10 22,37 23,48 25,27 
0,06 17,38 21,45 21,90 22,91 24,85 
0,07 16,78 20,89 21,47 22,45 24,39 
0,08 16,26 20,38 21,15 21,99 24,01 

SSIM 
0,01 0,64 0,74 0,73 0,73 0,76 
0,02 0,54 0,65 0,65 0,67 0,73 
0,03 0,48 0,60 0,60 0,62 0,70 
0,04 0,44 0,57 0,58 0,59 0,68 
0,05 0,41 0,54 0,55 0,56 0,66 
0,06 0,38 0,52 0,53 0,54 0,64 
0,07 0,36 0,50 0,51 0,52 0,62 
0,08 0,34 0,48 0,50 0,51 0,61 
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Рисунок 3 – Зависимость ПОСШ от дисперсии шума 

Figure 3 – Dependence of the PSNR on the noise variance 

 
Рисунок 4 – Зависимость SSIM от дисперсии шума 

Figure 4 – Dependence of the SSIM on the noise variance  

Анализ данных, представленных в таблице 1, а также на рисунке 3 и рисунке 4, показы-
вает, что предложенные методы обработки изображений, зашумлённых спекл-шумом, пре-
восходят традиционные подходы по всем используемым метрикам качества: СКО, ПОСШ и 
SSIM. 

Как следует из рисунка 5, применение медианного фильтра (рисунок 5, в) для подавления 
спекл-шума демонстрирует ограниченную эффективность. Несмотря на частичное сглажива-
ние, искажения, вызванные спеклом, сохраняются, особенно в однородных участках изобра-
жения. Это обусловлено отсутствием свойства адаптивности у данного фильтра: он не учи-
тывает локальные статистические свойства сигнала, что приводит к чрезмерному размытию 
мелкомасштабных деталей и потере контрастных переходов на границах объектов. 
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Рисунок 5 – Результаты обработки тестового изображения 
Figure 5 – Results of test image processing 

В результате искажаются локальные яркостные соотношения, что снижает визуальное 
качество восстановленного изображения. Фильтр Ли (рисунок 5, г), в отличие от медианного, 
адаптируется к локальной дисперсии сигнала, что обеспечивает более высокую эффектив-
ность подавления шума. Однако в однородных областях наблюдается остаточная шумовая 
«зернистость». Кроме того, фильтр Ли также склонен к искажению яркостных характеристик 
фона изображения. Метод вейвлет-фильтрации с пороговой обработкой (рисунок 5, д) обес-
печивает более эффективное подавление спекл-шума по сравнению с предыдущими подхо-
дами. Однако он сопровождается возникновением визуальных артефактов, особенно вблизи 
границ объектов. В отличие от рассмотренных методов, предложенный подход (рисунок 5, е) 
демонстрирует превосходящую эффективность по совокупности критериев: достигается зна-
чительное снижение уровня шума при одновременном сохранении пространственной резко-
сти объектов, отсутствуют визуально заметные артефакты, а также обеспечивается коррект-
ное восстановление яркостных характеристик фона. 

Заключение 
В работе представлен новый метод шумоподавления, основанный на обработке ПОД 

вейвлет-коэффициентов с помощью RNN-LSTM. Экспериментальные результаты показали, 
что предлагаемый метод обеспечивает относительно высокую эффективность по подавлению 
спекла в РСА-изображениях по сравнению с традиционными методами по всем используе-
мым критериям качества, включая СКО, ПОСШ, SSIM, и субъективной визуальной оценке. 
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