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Рассматривается задача построения модели многокритериального анализа данных в различных 
прикладных областях для системы поддержки принятия решений. Целью работы является разра-
ботка модели многокритериального анализа данных, на основе которой будут реализованы гибкие и 
адаптируемые системы поддержки принятия решений для различных областей знаний. Предлагает-
ся инновационный подход к построению оптимизационной модели на основе анализа траекторий в 
многомерных метрических пространствах. Проведенное исследование показало, что, несмотря на 
единую методику моделирования, реализация многокритериальной системы поддержки принятия 
решений существенно варьируется в зависимости от прикладной области. Так, в работе представ-
лен сравнительный анализ результатов моделирования образовательного процесса и технической 
системы. Для формализации задачи выбираются частные показатели, отражающие динамику 
управления информационным процессом и определяющие размерность соответствующего метриче-
ского пространства. Обосновывается выбор методов агрегации этих показателей в единый обоб-
щенный критерий в n-мерном пространстве. На основе полученных результатов описывается прин-
цип построения траекторий в многомерных метрических пространствах, необходимый для повыше-
ния эффективности управления информационным процессом в различных приложениях. Практиче-
ская значимость исследования заключается в возможности адаптации предлагаемой модели много-
критериального анализа данных для различных областей знаний. Научная новизна заключается в ав-
томатизации принятия решений за счет применения современных методов многокритериальной 
оптимизации. 
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Введение 
Современные прикладные области – от образования и медицины до промышленности и 

телекоммуникаций – сталкиваются со стремительным увеличением количества информации, 
требующей выполнения математических и программных разработок, способных эффективно 
решать сложные многокритериальные задачи. Системы поддержки принятия решений 
(СППР) являются неотъемлемым инструментом в таких сферах, обеспечивая обоснованный 
и рациональный выбор управленческих решений. При этом методы управления и критерии 
оценки могут существенно различаться в зависимости от предметной области, хотя сама ло-
гика принятия решений зачастую опирается на единые принципы многокритериальной оп-
тимизации. 

Важным инструментом моделирования эффективных СППР является многокритериаль-
ный анализ данных. Сложность задач принятия решений заключается не столько в количе-
стве критериев, сколько в их разнородной природе: критерии могут быть количественными 
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или качественными, объективными или субъективными, а также выражаться в различных 
шкалах измерения. Это создаёт серьёзные трудности при построении согласованных и 
устойчивых моделей принятия решений. 

На сегодняшний день известно множество подходов для оценки эффективности различ-
ных процессов. Например, в работе [1] предложен метод анализа траекторий в многомерных 
метрических пространствах для управления информационными процессами. В исследовани-
ях [2, 11] рассматриваются модели повышения качества образовательного процесса в вузах; а 
в трудах [3, 4] предложены алгоритмы многокритериального анализа и модели формирова-
ния комплектов оборудования технических систем. Однако, несмотря на многообразие су-
ществующих решений, остаётся актуальной задача создания универсальной, гибкой модели 
многокритериального анализа, способной адаптироваться к специфике различных приклад-
ных областей и эффективно обрабатывать разнотипные данные. 

Теоретические исследования и анализ современного состояния вопроса показали, что 
наиболее перспективным направлением является разработка моделей, учитывающих сме-
шанный набор критериев и позволяющих применять единый инструментарий интеллекту-
ального анализа данных в самых разных предметных областях. Вместе с тем из-за противо-
речивого характера критериев (улучшение по одному может приводить к ухудшению по-
другому) невозможно найти решение, оптимальное по всем показателям одновременно. В 
таких условиях целесообразно использовать один или комбинацию многокритериальных ме-
тодов принятия решений (ММПР) [5, 12]. 

Предлагаемая в данной статье модель отличается от существующих комплексным под-
ходом к учёту разнородных критериев и внедрением новых автоматизированных алгоритмов, 
ориентированных на повышение эффективности управления информационным процессом в 
различных сферах. Практическая значимость исследования заключается в том, что приме-
нение полученной модели позволяет создать информационную систему для принятия реше-
ний на основе многокритериального анализа данных. Научная новизна и прикладной ре-
зультат исследования состоят в разработке уточнённого методического аппарата, обеспечи-
вающего более точную и обоснованную оценку альтернатив и, как следствие, – повышение 
качества управленческих решений. 

Постановка задачи 
В условиях современной информационной среды принятие обоснованных управленче-

ских решений напрямую зависит от эффективности обработки и анализа разнородных дан-
ных, составляющих основу информационных процессов. Эти процессы включают последо-
вательные этапы сбора, преобразования, интерпретации и оценки информации, на основе ко-
торых формируется решение о необходимых воздействиях на исследуемый объект или субъ-
ект. Однако из-за высокой размерности, неоднородности и противоречивости критериев 
оценки такие процессы часто сопровождаются значительными временными и вычислитель-
ными затратами, что снижает оперативность и качество принимаемых решений. 

Одним из перспективных направлений для повышения эффективности управления ин-
формационным процессом является построение модели, основанной на анализе траекторий в 
многомерных метрических пространствах. При этом наблюдается существенная зависимость 
результатов моделирования от выбора метрики: применение одинаковых инструментов к од-
ному и тому же набору данных в различных метрических пространствах может приводить к 
принципиально разным выводам и рекомендациям. Это создаёт проблему несогласованности 
решений и снижает их надёжность. 

В связи с этим возникает необходимость в разработке модели, способной обеспечивать 
устойчивый и рациональный выбор решений в условиях многокритериальности и метриче-
ской неопределённости. 

Для решения задачи построения модели, основанной на методах многокритериальной 
оптимизации, требуется разработка теоретической и методической основы для построения 
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интеллектуальных систем поддержки принятия решений, обеспечивающих высокую ско-
рость и качество анализа данных в различных прикладных областях. 

Теоретическая часть 
Информационный процесс, лежащий в основе принятия управленческих решений, фор-

мализуется как совокупность частных показателей **
2

*
1 ,...,, nwww , которые отражают динамику 

его изменения и задают размерность метрического пространства, в котором осуществляется 
моделирование. Эти показатели выступают критериями эффективности в конкретной пред-
метной области, а их количество определяется логикой поставленной задачи и спецификой 
анализируемого процесса. 

Поскольку исходные значения частных показателей могут иметь разные масштабы и 
размерности, перед построением модели их необходимо нормализовать. В настоящей рабо-
те используется линейное преобразование, отображающее значения каждого показателя на 
отрезок [0;1], которое определяется формулой: 
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где *
iw  – текущее значение i -го показателя, *

maxiw , *
miniw  – его минимальное и максимальное 

значения в выборке. 
На основе нормализованных данных формируется обобщённый показатель, интерпре-

тируемый как расстояние между точками в n -мерном метрическом пространстве. Способ его 
расчёта зависит от прикладного контекста решаемой задачи. В данной статье рассматрива-
ются два принципиально различных подхода. 

1. Нахождение расстояния от исследуемого до «идеального» объекта – с максимальны-
ми характеристиками по всем критериям; 

2. Нахождение расстояния от исследуемого до «неидеального» объекта – с минималь-
ными характеристиками по всем критериям. 

В первом случае эффективность управления процессом повышается при уменьшении 
расстояния до идеальной траектории, во втором – при увеличении расстояния до неидеаль-
ной траектории. Такой дуализм позволяет гибко адаптировать модель под специфику решае-
мой задачи – для оценки состояния технической системы или анализа эффективности обра-
зовательного процесса. 

Особенностью информационных процессов является их динамическая природа: структура 
и количество частных показателей могут изменяться во времени [8, 9]. Это усложняет примене-
ние традиционных методов моделирования и обусловливает необходимость использования раз-
нообразных метрик, адаптированных под характер исходных данных и цели анализа. В работе 
рассматривается множество разнообразных метрик: евклидово расстояние, квадрат евклидова 
расстояния, метрика Чебышева, расстояние Минковского, расстояние Хаусдорфа и др. [1, 2]. 

В исследуемых метриках обобщенный показатель выступает как мера в метрическом 
пространстве, на основании которой происходит построение траекторий и последующий 
сравнительный анализ текущей траектории, характеризующей некоторый информационный 
процесс, с оптимальными траекториями, выбранными в ходе исследования [2]. 

Обозначим через ( ) ( ) ( )
1 2( ) , ,...,j j j

nw j w w w  вектор частных показателей j-го объекта 
(j = 1,…,m, где m – число исследуемых объектов). Тогда в евклидовой метрике обобщённый 
показатель (расстояние между объектами j и k) вычисляется по формуле: 

 2

1
( )

n

jk ji ki
i

d w w


  . (2) 

Анализ траекторий объектов относительно идеальной и неидеальной траекторий в этом про-
странстве позволяет оценить эффективность управления: чем ближе расстояние к «идеальной» 
траектории (или дальше от «неидеальной» траектории), тем выше качество результата. 
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В случае, когда критерии имеют разную значимость, ранжированы между собой по сте-
пени важности, используется метрика взвешенного евклидова расстояния [10]. Обобщен-
ный показатель в рассматриваемой метрике вычисляется по формуле: 

 2

1
( ) ,

n

jk i ji ki
i

d c w w


   (3) 

где ic  – вес i-го частного показателя; 0ic  , 
1

1
n

i
i

c


 . Веса, как правило, определяются экс-

пертным путём или на основе нормативных документов. Эта модификация позволяет точнее 
отразить приоритеты в задаче и повысить адекватность модели. Однако следует учитывать 
ситуации, когда веса факторов одинаковы, а одному из них надо повысить вес. В этом случае 
приходится опираться на опрос экспертов и директивные документы [2]. 

При работе с относительными показателями, где акцент делается на сильно различающи-
еся объекты, целесообразно применять квадрат евклидова расстояния. Для расчета обоб-
щенного показателя в рассматриваемом метрическом пространстве применяют формулу (4): 

 2

1
( ) .

n

jk ji ki
i

d w w


   (4) 

Метрика Чебышева фокусируется на максимальном отклонении по одному из критериев. 
Максимальное расстояние между соответствующими частными показателями определяет 
обобщенный показатель в данной метрике (формула 5): 
 

1
max .jk ji kii n

d w w
 

   (5) 

Однако, анализируя полученную модель в рассматриваемой метрике, можно заключить, 
что происходит игнорирование информации по остальным критериям, что может привести к 
потере детализации. 

Более гибким инструментом выступает метрика Минковского, обобщающая целый 
класс расстояний: 

 
1

1
( ) , 1,

pn
p

jk ji ki
i

d w w p


    (6) 

где параметр 1p  . При 1p  может быть получено манхэттенское расстояние (расстояние 
городских кварталов), при 2p   – простое евклидово расстояние. Экспериментальное ис-
следование показало, что при большинстве практических сценариев поведение траекторий в 
метрике Минковского близко к евклидову, особенно при 2p  . 

Для задач, требующих сравнения множеств состояний (например, при кластеризации или 
оценке множества альтернатив), применяется метрика Хаусдорфа. Пусть A,B X – ком-
пактные подмножества полного метрического пространства (X, d). Тогда расстояние Хау-
сдорфа определяется по формуле: 
 ( ) max(min )

b Ba A
d A,B a b


  . (7) 

Эта метрика особенно полезна при работе с нечёткими или интервальными данными и 
играет важную роль в задачах группировки и сегментации. 

Проведённый анализ показал, что построение многокритериальной модели в виде траек-
тории в n-мерном метрическом пространстве позволяет системно учитывать множествен-
ность факторов, минимизировать влияние субъективных оценок и повысить обоснованность 
принимаемых решений. В качестве примеров в работе рассматриваются две разнородные об-
ласти – техническая система и образовательный процесс. Несмотря на различия в содер-
жании, в обоих случаях применима единая методологическая основа, подтверждающая уни-
версальность предложенного подхода. 

Ключевым этапом моделирования является выбор системы критериев, частных показа-
телей, которые должны быть репрезентативными, измеримыми и согласованными с целями 
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анализа, адекватно отражающими суть решаемой задачи в конкретной прикладной области. 
Именно на их основе формируется многокритериальная модель, лежащая в основе системы 
поддержки принятия решений, способной адаптироваться к специфике различных приклад-
ных задач. 

Общая постановка задачи принятия решений (ЗПР) в многокритериальной среде может 
быть описана следующим образом. Пусть 1 2 3( , , )W w w w  – конечное множество альтернатив 
(вариантов решений), где каждый элемент wi интерпретируется как точка в n-мерном метри-
ческом пространстве. В рамках данной работы множество W  представляет собой совокуп-
ность частных показателей, характеризующих либо техническую систему, либо образова-
тельный процесс. 

Пусть также 1 2( ( ), ( ),..., ( ))mJ w J w J w  – множество возможных исходов, задаваемое векто-
ром значений целевых функций, каждая из которых оценивает качество выбранного реше-
ния по соответствующему критерию. Между выбором альтернативы iw W  и наступлением 
результата kj J  существует причинно-следственная связь, а также определённый меха-
низм оценки качества этого результата. Необходимо определить оптимальный вариант, ко-
торый позволит получить высокий уровень результата. 

Качество каждой альтернативы оценивается с помощью показателей качества решения – 
функций : , 1,kf J R k m   fk:, где R – множество действительных чисел. При этом каждая 
функция fk подлежит либо максимизации, либо минимизации в зависимости от содержатель-
ного смысла соответствующего критерия (например, минимизация затрат, максимизация 
надёжности, минимизация веса оборудования, минимизация времени ремонта для техниче-
ской системы, максимизация освоения профессиональных компетенций для образовательно-
го процесса и т.д.). 

Связь между альтернативами и исходами задаётся детерминистской функцией, отобра-
жающей множество альтернатив во множество исходов: :W J  , которая сопоставляет 
каждой альтернативе iw W  соответствующий вектор исходов ( )k ij w J   . Таким обра-
зом, итоговая оценка качества решения выражается через суперпозицию: ( ) ( ( ))i iJ w f W  , 

1,i m , что формирует векторное отображение: 1: , ( ,..., )n
i mJ w R J J J  , ( ) nJ W F R  . 

В результате получена многокритериальная модель принятия решений (задача мно-
гокритериальной оптимизации) следующего вида: 
 ( ) max, 1, ,

i

n
i w W

J w i m W R


    или ( ) min, 1, , ,
i

n
i w W

J w i m W R


    (8) 

где «max» или «min» понимается в смысле Парето-оптимальности, поскольку в условиях 
конфликта критериев глобальный максимум (или минимум) по всем показателям одновре-
менно, как правило, недостижим. 

Полученная модель может быть интерпретирована как задача оптимального выбора 
конфигурации информационной системы или программного комплекса, эффективность 
функционирования которой оценивается по нескольким разнородным показателям 1,..., mf f  – 
например, стоимости, надёжности, времени ремонта, адаптивности для технической систе-
мы, освоения профессиональных компетенций для образовательного процесса и др. 

Однако практическая реализация подобных моделей сопряжена как с алгоритмически-
ми трудностями (высокая размерность пространства решений, вычислительная сложность), 
так и с концептуальными – необходимостью учитывать специфику прикладной области, 
характер взаимодействия критериев и степень допустимого компромисса между ними. 

В связи с этим центральную роль при решении многокритериальных задач играют мето-
ды многокритериальной оптимизации, позволяющие находить обоснованные компромис-
сные решения. Сравнительный анализ таких методов, а также обоснование выбора наиболее 
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подходящего подхода для рассматриваемых прикладных случаев (техническая система и об-
разовательный процесс) представлены в разделе «Экспериментальные исследования». 

Подводя итог вышесказанному, заключаем, что проведенный теоретический анализ поз-
волил сформулировать обобщённую модель многокритериального принятия решений, осно-
ванную на представлении информационного процесса как траектории в n-мерном метриче-
ском пространстве. Показано, что эффективность управления в различных прикладных обла-
стях – от технических систем до образовательных процессов – может быть оценена единооб-
разно с использованием системы частных показателей, нормализованных и интерпретируе-
мых как координаты точек в многомерном пространстве. Обоснована необходимость приме-
нения различных метрик в зависимости от характера данных и целей анализа. Установлено, 
что выбор метрики существенно влияет на форму траекторий и, как следствие, на интерпре-
тацию результатов, что требует гибкого подхода к построению модели. Сформулирована за-
дача многокритериальной оптимизации в строгой математической постановке, включающей 
множество альтернатив, вектор целевых функций и детерминистское отображение между 
ними. Подчёркнута ключевая роль компромиссных решений в условиях конфликта критериев 
и невозможности достижения глобального оптимального значения по всем показателям одно-
временно. Таким образом, теоретические исследования заложили основу для разработки си-
стем поддержки принятия решений, способных адаптироваться к специфике различных пред-
метных областей при сохранении единого математического и концептуального аппарата. Про-
веденное моделирование открывает возможности для повышения объективности, точности и 
оперативности управленческих решений в условиях многокритериальной неопределённости. 

Экспериментальные исследования 
Основной задачей экспериментальных исследований является практическое примене-

ние разработанной многокритериальной модели для построения систем поддержки при-
нятия решений в двух принципиально различных прикладных областях: 

 технической системе (оптимизация комплектации вооружения и военной техники Воз-
душно-десантных войск (ВДВ); 

 образовательном процессе (комплексная оценка освоения профессиональных компе-
тенций студентами, в проведенном исследовании рассматривалась выборка студентов 
укрупненного направления 09.00.00 «Информатика и вычислительная техника» РГРТУ). 

Несмотря на различия предметных областей, использовался единый методологический под-
ход: представление информационного процесса в виде траектории в n -мерном метрическом 
пространстве, где каждая точка 1 2( , ,..., )nW w w w  соответствует вектору частных показателей, 
характеризующих состояние объекта на определённом этапе проводимого исследования. 

Для образовательной сферы частные показатели отражают уровень сформированности 
компетенций на рассматриваемом этапе обучения; для технической системы – параметры, 
определяющие «коэффициент технической готовности», который показывает эффективность 
функционирования основных подсистем рассматриваемой системы. Частные показатели wi, 
(i = 1,2,…,n), имеющие смысл для некоторой точки в пространстве Rn, объединяют обобщен-
ным показателем эффективности. В качестве обобщенного выбирается показатель на осно-
ве расстояния между точками пространства. При этом выделяются 2 подхода, представлен-
ные в теоретической части данной работы. Отмечено, что для повышения эффективности 
управления процессом необходимо сокращение расстояние между точками многомерного 
метрического пространства при реализации первого подхода и, наоборот, увеличение рас-
стояния при реализации второго подхода [1, 2]. 

Выбор количества и содержания критериев осуществлялся с учётом специфики каждой 
прикладной области и требований к адекватности модели. В экспериментах был рассмотрен 
ограниченный размер метрического пространства n = 12, что обеспечило баланс между дета-
лизацией и вычислительной реализуемостью на начальных этапах исследования. Зона воз-
можных значений обобщенного показателя относительно неидеальной траектории представ-
лена на рисунке 1. 
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Рисунок 1 – Зона возможных значений обобщенного показателя относительно не-

идеальной траектории 
Figure 1 – Generalized indicator possible values relative to imperfect trajectory 

Расчет обобщенного критерия в евклидовой метрике позволил построить траектории раз-
вития объектов и визуализировать их динамику относительно эталонных решений (рису-
нок 2). 

  

Рисунок 2 – Траектории относительно «неидеального» и «идеального» объектов  
в Евклидовой метрике 

Figure 2 – Trajectories of «non-ideal» and «ideal» objects in the Euclidean metric 

Анализ полученных траекторий показал: чем ближе расстояние от исследуемого объекта 
к «идеальной» траектории, тем эффективнее показатели рассматриваемого объекта, т.е. зна-
чение обобщенного показателя на анализируемом участке не увеличивается относительно 
«идеального» объекта. И чем дальше расстояние от траектории «неидеального» объекта до 
рассматриваемой траектории исследуемого объекта, тем эффективнее показатели, т.е. значе-
ние обобщенного показателя на анализируемом участке увеличивается относительно «неиде-
ального» объекта. 

На следующем этапе исследования был применен новый способ анализа информации с 
использованием звездообразной, радарной диаграммы, отображающей значения всех част-
ных критериев одновременно. На рисунке 3 приведено сечение множества критериев в опре-
деленный момент времени с целью группировки основных факторов, влияющих на достиже-
ние глобальной цели. 

На полученной диаграмме по осям отложены значения частных показателей. Для сравни-
тельного анализа отображены результаты «идеального», «неидеального» и исследуемых объ-
ектов. Такой подход обеспечивает интуитивно понятную оценку преимуществ одних реше-
ний над другими. 

Многокритериальную задачу (8) необходимо свести к однокритериальной версии приме-
нением «универсального» критерия, который может быть получен «сверткой» критериев в 
один комплексный – целевую функцию. Для этой цели проводится ранжирование критериев 
и последовательное применение методов многокритериальной оптимизации. В данном ис-
следовании применялись последовательно следующие методы: главного критерия, линейной 
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свертки, идеальной точки. Метод идеальной точки модифицировался в метод идеальной 
траектории, основанный на моделировании эффективности информационных процессов в 
n-мерном метрическом пространстве. Ранжирование критериев производилось методом 
приоритетов. Для нахождения оптимального (универсального) решения использовался ме-
тод последовательных уступок.  

 
Рисунок 3 – Сравнительный анализ результатов на звездообразной диаграмме 

Figure 3 – Comparative analysis of the results on asterisk chart 

При помощи метода главного критерия выбирается один из функционалов fi, доминиру-
ющий показатель, наиболее полно отражающий цель принятия решения. Накладываются до-
полнительные ограничения на остальные функционалы, что позволяет учитывать остальные 
требования к задаче. Благодаря введенным изменениям, задача (8) решается на новом допу-
стимом множестве как однокритериальная задача поиска максимума функционала. Однако 
возникают трудности в исследуемых прикладных областях, связанные с наличием несколь-
ких равноценных «главных» критериев, которые находятся в противоречии друг с другом. 
Это ограничивает применимость рассматриваемого метода. 

Метод линейной свертки позволил произвести агрегирование критериев с учетом весо-
вых коэффициентов. Для ранжирования критериев используется интегральная оценка. Одна-
ко точное определение значимости показателей зависит от экспертного мнения (метод прио-
ритетов), что не позволяет определить окончательные значения весов, особенно при наличии 
разнородных критериев оптимизации. 

Метод идеальной точки позволяет формализовать «универсальный» комплект для тех-
нической системы и «оптимальное» освоение компетенций в образовательном процессе как 
точки, максимально приближенной к идеалу по всем критериям. Расстояние до идеальной 
точки выступает в роли целевой функции. Метод идеальной точки сводит исходную много-
критериальную задачу к решению однокритериальной задачи. Стоит отметить сложность 
определения относительной важности критериев. 

Метод идеальной точки был модифицирован в метод идеальной траектории, при помощи 
которого формируется идеальная траектория, определяемая максимальными значениями част-
ных показателей. В рассматриваемых прикладных областях в качестве идеальной траектории 
рассматриваются универсальный комплект для технической системы и идеальный набор пока-
зателей освоения компетенций для образовательного процесса. По найденному значению 
обобщенного показателя осуществляется анализ множества критериев на соответствие (сте-
пень близости) универсальности, оптимальности и исключение неподходящих вариантов. 
Данный метод сводит исходную многокритериальную задачу (8) к решению ее однокритери-
альной версии. Завершающим этапом многокритериальной оптимизации с использованием 
метода идеальной траектории является оценка полученного оптимального решения. 

Для поиска компромиссного решения в условиях противоречивости критериев приме-
нялся метод последовательных уступок. Основная идея этого метода заключается в пошаго-
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вом ослаблении требований к наиболее приоритетному критерию для улучшения параметров 
остальных критериев. Важным этапом являются оценка полученного результата и расчет 
значения остальных критериев для оптимального решения. Обязательно определение допу-
стимых пределов изменения критериев, при которых сохраняется приемлемое качество ре-
шения. В случае, если достигнуто оптимальное решение или исчерпаны возможности улуч-
шения, процесс останавливается. Однако эффективность метода последовательных уступок 
зависит от грамотного выбора порядка рассмотрения критериев и способности оценивать по-
следствия изменений каждого шага. 

В рамках решения многокритериальной задачи принятия решений (8) на начальном этапе 
исследования был применён метод покоординатного поиска экстремума – итерационный 
алгоритм оптимизации нулевого порядка, не требующий вычисления градиента или произ-
водных целевой функции. Его выбор обусловлен устойчивостью к некорректным данным, 
простотой реализации и способностью обеспечивать надёжное начальное приближение даже 
при сложной структуре пространства решений. 

Суть метода заключается в последовательной оптимизации целевой функции (функцио-
нала) по одной координате за итерацию, с фиксированными значениями остальных компо-
нент вектора альтернатив W = (w1, w2, …, wn). Направление и величина шага по каждой коор-
динате адаптируются в ходе поиска в зависимости от поведения функционала. 

Алгоритм покоординатного поиска экстремума реализован следующим образом: 
1. Инициализация: выбор начальной точки W(0)∈Rn из множества допустимых альтерна-

тив и определение начального шага h0 > 0 . 
2. Нахождение значения целевого функционала F(0) = J(W(0)). 
3. Для каждой координаты k = 1,2,…,n: 

a. Устанавливается текущий шаг hk = h0. 
b. Формируется пробная точка Wk, в которой k -я компонента увеличена на hk: 
wk = wk + hk . 
c. Вычисляется значение функционала в пробной точке: F′ = J(W′). 
d. Если F′≤F (в случае минимизации), то шаг увеличивается (например, hk: = 3hk), зна-
чение функционала обновляется (F: = F′), и переход осуществляется к новой пробной 
точке в том же направлении. 
e. В противном случае направление поиска меняется на противоположное: wk: = wk − hk, 
шаг сокращается (hk: = −0,5hk ), и поиск продолжается в обратном направлении. 

4. Процесс повторяется по всем координатам до завершения полного цикла по вектору 
W. 

5. Итерации прекращаются после выполнения заданного числа N вычислений функцио-
нала J(W). 

Выход из алгоритма осуществляется после достижения заданного числа N вычислений 
J(W). Программа выполняется таким образом, что позволяет обеспечить возможность про-
должения работы с прерванного места после повторных входов в алгоритм. 

Важной особенностью реализации является отсутствие встроенных критериев сходимо-
сти (например, по изменению функционала или норме градиента). Вместо этого контроль 
процесса осуществляется внешним управляющим модулем: по достижении лимита N вычис-
лений алгоритм приостанавливается, возвращая текущее приближение. При последующем 
запуске поиск возобновляется с сохранённого состояния, что позволяет гибко регулировать 
глубину оптимизации и проводить промежуточный анализ результатов. 

Такой подход особенно эффективен на ранних стадиях решения сложных многокритери-
альных задач, где важна возможность интеграции с другими методами (например, с методом 
последовательных уступок или идеальной траектории). Благодаря отсутствию требований к 
дифференцируемости функционала, алгоритм применим к разнородным, дискретным дан-
ным, характерным как для технических систем, так и для образовательного процесса. 
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Разработанный алгоритм нашел свое применение при разработке систем поддержки при-
нятия решений, построенных на основе реляционных баз данных (БД). Отличительной осо-
бенностью реализованного подхода по сравнению с ранее опубликованными исследования-
ми является единая методологическая основа, позволяющая одновременно учитывать разно-
родные показатели эффективности как технической системы, так и образовательного про-
цесса в рамках общей многокритериальной модели. 

Однако стоит отметить, что, несмотря на единую методику моделирования информаци-
онных процессов, реализация многокритериальной системы поддержки принятия решений в 
исследуемых прикладных областях имеет существенное отличие. Так, для технической си-
стемы используются классические подходы построения СППР на основе многокритериаль-
ной модели данных. В указанной предметной области критерии изменяются случайным об-
разом, стохастически, поэтому необходимо введение дополнительных ограничений для фор-
мирования управляющих решений. Для образовательного процесса необходимо изменить 
подход при проектировании системы поддержки принятия решений, учитывая тот факт, что 
в определенный момент времени происходит изменение числа частных показателей (дина-
мический процесс), с помощью которых происходит многокритериальное оценивание. Объ-
ем и сложность организации данных динамического процесса зачастую не позволяют эффек-
тивно применять традиционные методы моделирования СППР, что приводит к необходимо-
сти разработки новых решений. Очевидно, возникает необходимость более детального ис-
следования применительно к конкретной предметной области. 

Учитывая особенности организации данных для технической системы и образовательно-
го процесса, были спроектированы и реализованы две специализированные системы под-
держки принятия решений, которые позволяют решать задачи принятия решений с исполь-
зованием методов многокритериальной оптимизации. Даталогическая модель данных для 
программы моделирования технической системы [6,7] представлена на рисунке 4. 

 
Рисунок 4 – Даталогическая модель данных технической системы 

Figure 4 – Datalogical data model of technical system 

Инфологическая модель данных для формирования БД образовательного процесса [13] 
представлена на рисунке 5. 

Обе системы интегрированы с реляционными базами данных, поддерживающими накоп-
ление, обновление и структурированное хранение информации [14, 15]. Визуализация ре-
зультатов выполнена в виде диаграмм (рисунки 6, 7), позволяющих оперативно оценивать 
эффективность компонентов технической системы и уровень освоения компетенций в обра-
зовательном процессе. Экспериментальное исследование показало, что применение предло-
женной методики повышает эффективность решений в среднем на 20 % по сравнению с 
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традиционными подходами. Эффективность не измеряется субъективно, а оценивается объ-
ективно через обобщённый показатель, который строится на основе многокритериальной оп-
тимизации, рассчитываемый как взвешенная сумма нормализованных критериев. Сравнение 
показало, что разработанный подход повышает значение обобщённого показателя эффектив-
ности с 0,725 до 0,870, что соответствует росту на 20 %. Такой результат достигнут за счёт 
объективной многокритериальной оптимизации, исключения избыточности через анализ до-
минирования строк и учёта вероятностных характеристик объектов исследования. 

 
Рисунок 5 – Инфологическая модель данных для формирования  

БД образовательного процесса 
Figure 5 – Infological data model for creating educational process database 

 
Рисунок 6 – Диаграмма оптимизации компонент технической системы 

Figure 6 – Optimization diagram of technical system component 
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Рисунок 7 – Диаграмма анализа уровня освоения компетенций 

Figure 7 – Competence development level analysis chart 

Таким образом, проведённые исследования подтвердили универсальность предложенной 
многокритериальной модели, основанной на анализе траекторий в метрических простран-
ствах. Несмотря на различия в природе данных и динамике процессов, единая методологиче-
ская основа позволила успешно решить задачи в обеих предметных областях. Отличительной 
особенностью исследования являются комплексный учёт разнородных критериев и примене-
ние гибридного подхода к оптимизации, сочетающего метрический анализ, экспертное ран-
жирование и адаптивные алгоритмы поиска оптимального решения. Практическая значи-
мость работы заключается в создании масштабируемой информационной системы, способ-
ной на основе многокритериального анализа данных поддерживать принятие качественных, 
обоснованных решений в условиях неопределённости и противоречий. 

Заключение 
Подводя итог вышесказанному, можно заключить следующее: проведенное теоретиче-

ское исследование позволило разработать и обосновать универсальную модель многокрите-
риального анализа данных, основанную на представлении информационного процесса в виде 
траектории в n-мерном метрическом пространстве. Теоретический анализ подтвердил воз-
можность единообразной оценки эффективности управления в разнородных прикладных об-
ластях – от технической системы до образовательного процесса – за счёт нормализации 
частных показателей и их интерпретации как координат точек в многомерном пространстве. 
Установлено, что выбор метрики существенно влияет на форму траекторий и интерпретацию 
результатов, что требует гибкого подхода к построению модели. Сформулирована математи-
ческая постановка задачи многокритериальной оптимизации, включающая множество аль-
тернатив, вектор целевых функций и детерминистское отображение между ними. Обозначе-
на необходимость поиска компромиссных (Парето–оптимальных) решений в условиях несо-
гласованности и конфликтности критериев. 

Экспериментальные исследования подтвердили универсальность предложенного подхо-
да: несмотря на различия в динамике и структуре данных (стохастическая изменчивость в 
технической системе и динамическая смена размерности критериев в образовательном про-
цессе), единая методологическая основа обеспечила успешное решение прикладных задач в 
рассматриваемых сферах. 

Отличительной особенностью проведенного исследования является комплексный под-
ход, сочетающий метрический анализ, экспертное ранжирование и адаптивные алгоритмы 
оптимизации, включая методы идеальной точки, идеальной траектории, последовательных 
уступок и покоординатного спуска. Это позволило создать масштабируемую информацион-
ную систему поддержки принятия решений, повышающую качество управленческих реше-
ний в условиях многокритериальной неопределённости. 
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Практическая значимость выполненной разработки заключается в том, что представлен-
ная методика обеспечивает повышение эффективности принятия решений на 20 % по срав-
нению с традиционными подходами, открывая перспективы для её применения в других 
предметных областях, где требуется обоснованный выбор в условиях множественности и 
противоречивости критериев. 
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