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сигнала температуры плазмы импульсного плазмотрона с полуоткрытой разрядной камерой с элек-
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новлено в электрофизической установке ИНГИР-Мнга-15 и направленно на взрывную камеру импуль-
сного плазмотрона.  

Цель работы заключается в расчёте параметров фотоприёмного устройства и в эксперимен-
тальной оценке температуры плазмы в импульсном плазмотроне с помощью созданного устройства. 
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Введение 
Импульсные плазмотроны с полуоткрытой разрядной камерой используются для созда-

ния в воздухе тороидальных плазменных вихрей с высокой светимостью [1]. Это представля-
ет интерес для создания импульсных источников мощного оптического излучения, плазмо-
химии, а также для получения автономных плазменных образований (АПО), удаленных как 
от стенок разрядной камеры, так и от источников энергии, что позволяет моделировать гро-
зовые явления [2].  

В импульсном плазмотроне [3] тороидальный плазменный вихрь создавался с помощью 
электрического взрыва тонких медных проволочек, установленных на боковой стенке полу-
открытой цилиндрической камеры, и затем он усиливался с помощью электрически взрыва-
емых толстых медных проводников, создававших мощный импульс тороидального магнит-
ного поля. Этот импульс способен инициировать индукционный разряд внутри тороидально-
го плазменного вихря, что способствует формированию долгоживущих АПО. При этом экс-
периментально удалось получить АПО с временем жизни порядка 50 мс. Для получения до-
статочно большего времени жизни плазменных сгустков необходимо обеспечить формиро-
вание токового слоя при индукционном разряде. Проведенные численные расчёты показали, 
что для получения узкой области распределения тока (в пределе токового слоя) критически 
важным параметром плазмы является начальная температура плазменного сгустка [4]. По-
этому экспериментальные данные о температуре плазменного сгустка при формировании 
АПО являются важной информацией, необходимой для совершенствования систем ввода 
энергии в плазму. Цель работы – расчёт параметров фотоприёмного устройства и проведе-
ние экспериментальных исследований по оценке максимальной температуры плазмы в ма-
кетном образце импульсного плазмотрона. 
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Следует отметить, что использование стандартных пирометров [5] для достижения обо-
значенной цели не представлялось возможным из-за имеющихся особенностей, в частности:  

1) диапазон измеряемых температур в стандартных пирометрах ограничен 6000 К, в то 
время как в рассматриваем случае температура плазмы может достигать значений порядка 
20000 К; 

2) измеряемый параметр (температура плазмы) представляет собой короткий импульс 
длительностью до 200 мкс, что затруднительно обеспечить в стандартных пирометрах; 

3) необходимость синхронизации импульсного фотосигнала с импульсом накачки энер-
гии в плазму импульсного плазмотрона, что не предусмотрено в стандартных пирометрах. 

Поэтому создание рассматриваемого далее фотоприёмного устройства являлось актуаль-
ной задачей.  

Теоретическая часть 
Плотную плазму, образующуюся в момент электрического взрыва медных проводников, 

можно в первом приближении считать чёрным телом, поскольку она состоит в основном из 
окислов меди, обладающих близким к единице коэффициентом излучения. В этом случае 
можно использовать закон Стефана – Больцмана  
 4

T T   , (1)  
где T  – интегральная излучательная способность плазменного сгустка, Вт/м2;  – универ-
сальная постоянная Стефана-Больцмана, равная 5,67·10-8 Вт/(м2·К4); T  – температура, К. 

В качестве рабочей модели будем рассматривать образующийся при электровзрыве 
плазменный сгусток в виде шара с диаметром, равным диаметру взрывной камеры D . В этом 
случае плотность потока мощности излучения на расстоянии X , где установлено фотопри-
ёмное устройство, составит 
  2 22p T D X   .   (2) 

Мощность излучения, поступающего на площадку фотодиода, в этом случае равна 
  22pP d N   ,  (3) 
где d  – диаметр диафрагмы, м; N – кратность ослабления излучения нейтральным филь-
тром, имеющем спектральную характеристику в виде некоторой константы. 

Сигнал на выходе фотоприёмного устройства составит 
 KPU  ,  (4) 
где K  – коэффициент передачи фотоприёмного устройства, В/Вт. 

После последовательных подстановок формул (1) в (2), (2) в (3), и (3) в (4), получаем  
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Формулу (5) для практического использования удобно записать в виде 

 
4T A U ,  (6) 

где U  – напряжение на выходе фотоприёмного устройства, В; A  – размерный коэффициент, 
К/В1/4: 
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Конструкция и электрическая схема фотоприёмного устройства 
Нами использовалась одна из стандартных электрических схем фотоприёмных уст-

ройств [6], доработанная с учетом специфических особенностей конкретного использования, 
а именно:  
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1) с учётом одиночного субмиллисекундного импульса излучения, имеющего мощность 
на уровне сотен киловатт;  

2) с учётом необходимости синхронизации фотосигнала с импульсом накачки энергии в 
импульсном плазмотроне.   

Внешний вид и электрическая схема фотоприёмного устройства приведены на рисунке 1.  
Фотоприёмное устройство (рисунок 1, а) установлено на металлическом кронштейне 1 и 

направлено на взрывную камеру импульсного плазмотрона, конструктивно фотоприёмное 
устройство выполнено в виде металлической коробки 2 с соответствующими разъёмами 3, 
при этом перед фотоприёмной площадкой фотодиода ФДУК-1 установлены диафрагма диа-
метром 3 мм и четыре нейтральных фильтра 4 с десятикратным ослаблением каждый. На 
электрической схеме (рисунок 1, б) приняты следующие обозначения: PD – фотодиод 
ФДУК-1, VD – кремневый диод КД-221, C1 – сглаживающий конденсатор 1 мкФ, С2 – раз-
делительный конденсатор 1 нФ, R1 – сопротивление 390 Ом, R2 – сопротивление 1 кОм,  
R3 – сопротивление 1 кОм, «U» – источник питания 9 В, «Вых» – выходной сигнал, «Синхр» – 
синхронизирующий сигнал, «GND» – общий провод. 

Фотоприёмное устройство работает следующим образом. 
На вход «Сихр» (рисунок 1, б) от пульта управления подаётся синхронизирующий сигнал 

в виде прямоугольного импульса, который через дифференцирующую цепочку C2, R3 и че-
рез сумматор VD, R2 подаётся через выход «Вых» на цифровой осциллограф, работающий в 
ждущем режиме одиночного импульса. К этому сигналу затем добавляется сигнал, получае-
мый на резисторе R1 при протекании фототока фотодиода PD.  

         
 а (a)   б (b) 

Рисунок 1 – Фотоприёмное устройство: а – внешний вид, б – электрическая схема  
Figure 1 – Photodetector: a – external appearance, b – electrical circuit 

Калибровка фотоприёмного устройства 
Калибровка фотоприёмного устройства представляла проблему в том смысле, что трудно 

было найти источник образцового излучения, имеющего спектр, аналогичный спектру излу-
чения плотной плазмы с температурой порядка 20000 К. Поэтому для калибровки фотопри-
ёмного устройства использовалась лазерная указка, работающая в зелёном диапазоне свето-
вых волн, имеющая мощность LP = 25 мВт. Несмотря на то, что лазер имеет узкую спек-
тральную линию, можно сказать обладает «дельтаобразным» спектром излучения, примене-
ние лазерного излучения оправдано тем, что фотодиод ФДУК-1 работает в режиме, далёком 
от насыщения, и с точки зрения выходного сигнала обладает интегрирующими свойствами 
по спектру регистрируемого излучения. Для него неважно, этот спектр является широким, 
или представляет собой дельта-функцию Дирака. Фотодиод в ненасыщенном режиме реаги-
рует на интегральную мощность излучения. Конечно, погрешность, связанная с собственной 
спектральной характеристикой, имеет место быть, но в нашем случае фотоприёмное устрой-
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ство не является средством измерения, требующим соответствующей аттестации, это 
устройство служит индикатором, и его показания носят ориентировочный характер. 

Калибровка фотоприёмного устройства осуществлялась следующим образом. 
При подаче этого излучения на площадку фотодиода ФДУК-1 (без фильтров) на выходе 

«Вых» было зарегистрировано напряжение LU = 5 В. Таким образом, коэффициент передачи 
фотоприёмного устройства составляет: 

 3

5 200,
25 10

L

L

UK
P   


 В/Вт.  (8) 

Остальные параметры в формуле (7) имеют следующие значения: Х = 1,7 м; D = 0,088 м; 
d = 0,003 м; N = 10000. Подставляя эти параметры в формулу (7) получаем: 
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 К/В1/4. (9) 

Отметим ещё раз, в экспериментах использовались нейтральные фильтры, одинаково 
ослабляющие излучение независимо от его спектрального состава. 

Экспериментальные результаты и их обсуждение 
Для проверки корректности проведенных расчётов были проведены испытания фотопри-

ёмного устройства совместно с импульсным плазмотроном [3], помещённым в электрофизи-
ческую установку ИНГИР-Мега-15 [7]. Блок-схема экспериментальной установки приведена 
на рисунке 2, а. 

     
      

 а (a)   б (b) 

Рисунок 2 – Экспериментальная установка: а – блок-схема, б –осциллограмма фотосигнала  
Figure 2 – Experimental setup: a – block diagram, b – oscillogram of photo signal 

Экспериментальная установка (рисунок 2, а) содержит следующие составные части: 1 – 
полуоткрытая цилиндрическая камера, 2 – электрически взрываемые медные проводники (16 
шт. сечением 0,35 мм2 каждый), 3 – общий электрод, 4 – тиристорный коммутатор (коммути-
руемый ток до 400 кА), 5 – конденсаторная батарея (1 Ф, 400 В), 6 – пульт управления, 7 – 
цифровой осциллограф, 8 – фотоприёмное устройство. Блоки 1, 2, 3 входят в состав импуль-
сного плазмотрона [3], а блоки 4, 5, 6, 7 входят в состав электрофизической установки «ИН-
ГИР-Мега-15» [7]. Фотоприёмное устройство 8 было направлено на открытую часть цилин-
дрической камеры 1. 

Эксперимент проводился следующим образом. 
От пульта управления 6 подавался синхронизирующий сигнал в виде прямоугольного 

импульса на синхронизирующий вход фотоприёмного устройства 8 и на тиристорный ком-
мутатор 4, в результате чего запускалась развёртка осциллографа, и срабатывал тиристорный 
коммутатор 4, передавая через общий электрод 3 напряжение от конденсаторной батареи 5 
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на взрываемые медные проводники 2. Вспышка света в фотоприёмном устройстве 8 преобра-
зовывалась в фотосигнал, осциллограмма которого приведена на рисунке 2, б. Длительность 
импульса составила около 150 мкс, амплитуда напряжения –  U = 1,2 В.  В этом случае в со-
ответствии с формулой (6) с учётом (9) получаем 
 4 44 42 10 1,2 2,09 10T A U      , К.  (10) 

Полученный результат (10) лежит диапазоне температур, типичных для явления электро-
взрыва металла [8].  

Заметим, что измеренная температура представляет собой среднее значение по всей по-
верхности плазменного сгустка. В качестве информативного параметра использовалось мак-
симальное значение температуры плазменного сгустка, которому соответствовало макси-
мальное значение напряжения на осциллограмме. Этой информации достаточно для оценки 
эффективности работы источников накачки энергии в импульсном плазмотроне.   

Заключение 
В настоящей работе была поставлена и решена задача проведения расчётов параметров 

фотоприёмного устройства для оценки температуры плазмы в импульсном плазмотроне. 
Также проведена экспериментальная проверка работоспособности созданного эксперимен-
тального образца фотоприёмного устройства. Его использование в дальнейшем планируется 
для оценки эффективности различных способов ввода энергии в плазму импульсного плаз-
мотрона при усовершенствовании его конструкции. Совершенствование импульсного плаз-
мотрона необходимо для повышения эффективности плазмохимических реакций при дей-
ствии сильного импульсного магнитного поля, увеличения яркости генерируемого светового 
излучения, а также для повышения времени жизни получаемых автономных плазменных об-
разований.  

Использованная в данной работе электрофизическая установка «ИНГИР-Мега-15» [7] 
была создана при поддержке Министерства науки и высшего Образования РФ, государ-
ственный контракт № 14.518.11.7002 от 19 июля 2012 г. 
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A photodetector has been created and calibrated, it allowing the usage of a photo signal to estimate plas-
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tor parameters in experimental verification of calculations results.  
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