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Введение 
Импульсно-периодические азотные лазеры низкого давления являются незаменимым 

технологическим инструментом в микро- и наноэлектронике [1, 2]. Сложная структура 
излучения в поперечном сечении лазерного пучка (центральное пятно и окружающий его 
«ореол») затрудняет фокусировку такого излучения в пятно с минимальными 
геометрическими размерами и не дает получить необходимые качественные показатели 
обрабатываемых изделий. По мере увеличения частоты повторения импульсов и средней 
мощности накачки наблюдается снижение мощности лазерного излучения в «ореоле» [3, 4]. 
Такая динамика распределения мощности излучения по сечению пучка может быть связана с 
перераспределением плотности тока по сечению разрядного канала при увеличении уровня 
накачки.  

Для определения механизма изменения плотности мощности лазерного излучения по 
сечению лазерного пучка в импульсно-периодическом режиме и последующего управления 
оптическими параметрами азотного лазера необходимо обладать информацией об условиях 
пробоя как по газовой среде в центральной части разрядного канала, так и по поверхности 
его стенок. Газоразрядные процессы в этих условиях будут в значительной степени 
определяться температурными полями и распределениями плотности молекул азота в 
пределах разрядного канала. 

Многочисленные исследования газоразрядных и оптических параметров импульсных 
разрядов в среде молекулярного азота с целью выяснения механизмов пробоя длинных 
трубок и особенностей генерации лазерного излучения проводились при относительно 
низких давлениях (PN2 ~ 1 Торр) и на частотах повторения импульсов в единицы герц [5-7], 
которые не типичны для промышленных вариантов азотных лазеров (PN2 ~ 15 -25 Торр и 
FПОВТ = 50 – 1500 Гц). Информация об условиях пробоя и генерации лазерного излучения на 
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длине волны λ = 337 нм при возбуждении на частотах повторения импульсов в сотни герц и 
килогерц до настоящего времени отсутствует. 

Экспериментальное определение температурных полей и соответствующих им 
распределений концентраций молекул азота по сечению разрядного канала диаметром 4 мм 
является чрезвычайно сложной задачей. Поэтому изучение распределений температуры и 
концентрации молекул азота проводилось аналитическим методом. 

Целью работы является получение количественной информации о распределениях 
температуры и концентрации молекул азота по сечению разрядного канала в диапазоне 
частот повторения возбуждающих импульсов от 200 до 2000 Гц с последующим 
установлением механизма пробоя в длинных трубках, а также генерации лазерного 
излучения в импульсно-периодическом режиме без характерного «ореола». 

Разрядный канал и теоретическая модель 
Разрядный канал, в котором зажигался продольный разряд и осуществлялось 

возбуждение молекул азота, был изготовлен из бериллиевой керамики. Его длина составляла 
350 мм, внутренний диаметр (2r0) – 4 мм, а внешний – 8 мм. Разрядная трубка располагалась 
внутри стеклянной оболочки. Через зазор между разрядной трубкой и внешней оболочкой 
подавалась вода. Сечение разрядной трубки и внешней оболочки теплообменника 
схематически приведено на рисунке 1. 

 
Рисунок 1 – Газоразрядная трубка (1) и внешняя оболочка теплообменника (2) 

Figure 1 – Gas discharge tube (1) and outer shell of heat exchanger (2) 

Зазор между керамической трубкой (1) и внешней оболочкой теплообменника (2) был 
6 мм. Проточная вода подавалась в цилиндрический теплообменник с расходом 2 – 3 л/мин. 

Тепло, выделяющееся в разрядном канале диаметром 4 мм и длиной 350 мм, 
передавалось через цилиндрическую оболочку в проточную воду. Учитывая очень высокую 
теплопроводность бериллиевой керамики и малую толщину стенки, принималось, что 
радиальный перепад температур по толщине стенки отсутствовал. В этом случае можно 
считать, что джоулево тепло, выделяющееся при накачке лазера, передается в водяную 
рубашку и удаляется из активного элемента лазера. Температуру на внутренней стороне 
разрядного канала в первом приближении можно считать равной температуре проточной 
воды в теплообменнике. 

Средняя электрическая мощность, рассеиваемая в газовом разряде и идущая полностью 
на нагрев газа, определяется как: 
 ,эл н повтP W F  (1) 

где WН – энергия накачки; FПОВТ – частота повторения импульсов. 
Так, для энергии накачки в 0,5 Дж и возбуждения разряда на частотах повторения 

импульсов 200 Гц и 2 кГц средняя электрическая (она же и тепловая) мощность будет иметь 
значение 100 Вт и 1000 Вт. 
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На рисунке 2 показаны характерные значения мощностей в рабочем диапазоне частот 
при различных зарядных напряжениях.  

  
Рисунок 2 – Значения мощности, вводимой в канал, при различной частоте повторения 

импульсов и зарядных напряжениях 
Figure 2 – Values of power input into channel at different pulse repetition rates  

and charging voltages 

Расчет температуры газа можно провести на основе баланса средних мощностей, 
поступающих в разрядный канал и отводимых из него за счет теплопроводности в водяную 
рубашку охлаждения с проточной водой.  

Стационарное уравнение теплопроводности в цилиндрических координатах (r, ѳ, z) при 
независимости граничных условий от «z» и «ѳ» (осевой и угловой координат) имеет вид [9]: 

 
1 ( ) ,v

d dTr T q
r dr dr

    (2) 

где r – радиальная координата, см; λ – коэффициент теплопроводности, Вт/(см·К); T – темпе-
ратура; qv – плотность мощности тепловыделения, Вт/см3. 

Граничные условия: 

0
dr
dT  при r = 0 (условие симметрии); 

стTT   при r = R (на стенке разрядного канала R температура равна температуре стенки Tст). 
В этом случае тепловой поток перпендикулярен к оси «z» цилиндрического канала 

азотного лазера. При значительных уровнях мощности в сотни и тысячи ватт, вводимых в 
разрядную трубку активного элемента объемом V ≈ 4,4 см3, необходимо учитывать 
функциональную зависимость коэффициента теплопроводности от температуры. 

Для описания λ(T) можно использовать функцию Сезерланда [10]: 
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 (3) 

где λ0 – значение коэффициента теплопроводности при T = 273 K, Вт/(см·К); С – постоянная 
Сезерланда (114 К для азота). 

Подстановка формулы (3) в уравнение (2) приводит к некоторым сложностям при 
решении дифференциального уравнения: 
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После первого интегрирования: 
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Используя граничное условие dT/dr = 0 при r = 0, находим постоянную интегрирования 
А = 0. Тогда можно записать: 

 
 

3 2 3 2

0

273 .
2 273v

T dT q rdr
T C C

 
    

   (4) 

Интегрирование правой части выражения (4) по Т приводит к неявному виду уравнения 
T(r), решение которого требует использования численных методов. 

Для решения в аналитическом виде необходимо упростить функцию зависимости 
коэффициента теплопроводности от температуры. Используя замену λ(T) на аппроксимацию 
по таблице данных, можно вместо функции Сезерланда использовать более простую и 
удобную для расчетов степенную функцию (рисунок 3). 

 
Рисунок 3 – Аппроксимация табличных данных теплопроводности азота 

Figure 3 – Approximation of tabular data on nitrogen thermal conductivity 

После аппроксимации, коэффициент достоверности Д2 которой составляет 0,997, 
получаем новую упрощенную зависимость λ(T): 
 ( ) ,bT a T     
где a = 8·10-6; b = 0,610. 

С учетом этой зависимости распределение температуры по сечению разрядного канала 
описывается выражением: 
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Определим теперь распределение концентрации молекул по сечению при условии, что их 
количество в разрядном канале интегрально должно сохраняться. Если система замкнута, то 
давление не может быть постоянным. 

Для нахождения выражения концентрации молекул по сечению разрядного канала 
использовались уравнение термодиффузии для стационарного случая и интегральное 
условие для числа молекул газа в разрядном канале (количество молекул остается 
постоянным) [9]: 

 ,TDdn n dT
dr D T dr

    (6) 

где n – концентрация молекул, см-3; DT – коэффициент термодиффузии, см2/с; D – 
коэффициент диффузии, см2/с. 

Если число молекул газа остается постоянным, то: 
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где L – длина разрядного канала, см; p0 – начальное давление; k – постоянная Больцмана; T0 – 
начальная температура. 

В результате решения системы уравнений (6), (7) было найдено общее выражение (8), 
описывающее распределение концентрации молекул газа по сечению разрядного канала: 
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где Tm – температура на оси канала; α – безразмерный параметр, равный отношению 
коэффициентов термодиффузии и диффузии. 

Результаты расчетов и их обсуждение 
Профили температуры T(r) и концентрации молекул азота n(r) при различных уровнях 

накачки приведены на рисунках 4 и 5. Для более удобного восприятия графиков 
концентраций молекул был построен опорный график для уровня накачки в 25 Вт, 
относительно которого легко можно прослеживать изменения концентрации на оси 
разрядного канала и его стенках. 

 
Рисунок 4 – Распределение температуры по радиусу разрядного канала для четырех значений 

средней мощности накачки 
Figure 4 – Temperature distribution along discharge channel radius for four values  

of average pumping power  

 
Рисунок 5 – Распределение концентрации молекул по сечению разрядного канала при 

различных вводимых мощностях накачки 
Figure 5 – Distribution of molecules concentration over discharge channel cross-section at different 

input pumping power 

Рост частоты повторения импульсов накачки приводит к значительному увеличению 
тепловой мощности, которая идет на нагрев рабочего газа. Из приведенных на рисунке 4 
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зависимостей видно, что для мощности накачки 100 Вт температура молекулярного азота 
составляет ≈ 500 ˚С, а при 1000 Вт температура становится выше 3000 ˚С. 

Достижение таких высоких значений температуры газа может приводить к термической 
диссоциации и термической ионизации молекул азота. Однако оценки степени диссоциации 
и степени ионизации по формуле Саха для максимальной температуры в 3000 ˚С дают 
значения в десятые и сотые доли процента. Т. е. газовый состав в разрядном канале в этих 
условиях не изменяется. 

Достижение на оси разрядного канала температур в сотни и тысячи градусов приводит к 
перераспределению концентрации молекул азота по сечению разрядного канала: чем выше 
температура на оси, тем меньше концентрация молекул азота в центральной области. 
Поскольку общее количество молекул в сечении разрядного канала остается постоянным, то 
с повышением мощности накачки будет расти отношение концентрации молекул в 
пристеночных областях к концентрации молекул на оси канала (nR/n0). При увеличении 
мощности накачки от 100 до 1000 Вт это отношение изменяется с 1,33 до 1,85.  

Полученные данные позволяют сделать вывод о том, что плазма разряда в длинной 
трубке при повышении частоты повторения импульсов накачки локализуется в ее 
центральной части. 

Заключение 
1. В импульсно-периодическом азотном лазере низкого давления с накачкой 

продольным разрядом температура азота по центру разрядного канала изменяется от 500  до 
3000 ˚С при увеличении уровня накачки в диапазоне от 100 Вт до1000 Вт (200 – 2000 Гц при 
энергии накачки W ≈ 0,5 Дж). 

2. Отношение (nR/n0) концентрации молекул у стенок разрядного канала к концентрации 
молекул азота в центральной части канала увеличивается с уровня 1,33 до 1,85 при 
увеличении температуры от 500 до 3000 ˚С. 

3. Снижение концентрации молекул азота по центру разрядного промежутка 
относительно стенок способствует интенсификации ионизационных процессов именно по 
его центральной части, что в свою очередь, облегчает пробой разрядного промежутка не по 
стенкам канала, а по газовой среде. 
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Temperature and nitrogen molecule concentration distributions across discharge channel in low-
pressure nitrogen laser with longitudinal discharge pumping in pulsed-periodic mode  
(F = 200 – 2000 Hz, pumping energy W = 0,5 J) were obtained using analytical methods. At maximum 
average pump power of P = 1 kW the temperature in the center of discharge channel reaches 3000 ˚C, and 
the concentration of nitrogen molecules in the center of discharge channel decreases by a factor of 1,4 
compared to the concentration of molecules near the walls. This information is useful for understanding 
breakdown mechanism in pulsed-periodic mode and for establishing the relationship between distribution of 
laser power across the beam and the processes in discharge channel. 
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